Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.
The Rev. Samuel Haughton, M. D., Fellow of Trinity College, Dublin, read the following paper:—

Notes on Animal Mechanics.

No. VI.—On the Muscular Anatomy of the Crocodile.

During the Easter Recess of 1864, I had an opportunity of explaining to Professor Gratiolet,* of Paris, the investigations I had made with respect to the mechanism of the leg of the Ostrich and the theory I had formed to explain it. This distinguished anatomist did me the honour of approving of my explanation, and urged me to procure a Crocodile, in the posterior limb of which he assured me I should find a mechanical problem exceeding in complexity that presented by the leg of the Ostrich, and as yet unsolved by anatomists.

During the month of March last I was furnished with a young Crocodile from Egypt, by Mr. Thomas Moore, Curator of the Derby Museum, Liverpool, to whom I had communicated my earnest desire to have an opportunity of dissecting such an animal; and the results of my examination fully bear out the anticipation of Professor Gratiolet, and also furnish a complete confirmation of the principles I made use of in my theory of the leg of the Ostrich.

The interlacing of tendons in the hind leg of the Crocodile is very remarkable, and more complex than in the Ostrich, although in one respect it somewhat resembles it.

* The incalculable loss that science has sustained in the early part of the present year by the premature death of this gifted anatomist, is exceeded by the loss experienced by his friends, to whom his genial social qualities endeared him even more than his brilliant scientific attainments. I extract from the "Journal des Debats" of the 19th February, 1865, the following just tribute to his memory:—

"Les sciences viennent de faire une perte aussi cruelle qu'imprévue; M. Gratiolet, professeur de zoologie à la Faculté des Sciences de Paris, a succombé hier matin à une attaque d'apoplexie.

"M. Gratiolet n'avait pas cinquante ans; avant-hier, encore plein de vie et de santé, il travaillait à son laboratoire du Muséum d'histoire naturelle lorsque, à deux heures, frappé d'une congestion subite, il dut être ramené à son domicile; quelques heures plus tard, il avait perdu connaissance; hier matin à quatre heures, il rendait le dernier soupir.

"Nous ne saurions peindre l'émotion profonde qu'a causée dans le monde scientifique l'annonce de cette mort prématurée. M. Gratiolet était aimé de tous; son affabilité, la droiture de son caractère lui avaient concilié toutes les sympathies.

"Ses travaux d'anatomie comparée, ses recherches sur le système nerveux et sur le cerveau, etc., l'avaient mis au nombre des naturalistes les plus distingués de notre pays; son merveilleux talent d'élucider l'avait placé au premier rang parmi nos professeurs les plus renommés, et l'aptitude de son esprit pour les études métaphysiques avait imprégné à ses œuvres un caractère d'originalité qu'appréciaient les philosophes aussi bien que les savants.

"La mort est venue le frapper au moment où, après de longues années de lutte, il semblait sur le point de recueillir le fruit de ses laborieux efforts. "Aimé Girard."
On removing the skin and dissecting away the fat, the muscles shown in Fig. 19 are exposed.

Fig. 19.

LEFT LEG OF CROCODILE (with skin removed, to show the superficial muscles).

1. **M. Gluteus maximus (b);** 0·15 oz.
 Origin; from central half of the ilio-ischiadic line.
 Insertion; into the fascia outside and above the knee joint.
 This is a broad flat muscle, and straps down the tendon of the **rectus femoris** in its passage over the knee.

2. **M. rectus femoris (a);** 0·08 oz.
 Origin; from anterior spine of the ilium, close to the acetabulum.
 Insertion; as in the leg of the Ostrich, into a tendon passing over the knee outwards, and terminating in a remarkable muscle* (x), in the calf of the leg, associated with the **gastrocnemius (u)**, and deriving a second origin from the **agitator cauda (c)**, as shown in the figure.

* This muscle may be the *plantaris.*

R. I. A. PROC.—**VOL. IX.**
3. *M. agitator cauda* (ε). 0·03 oz.
 Origin; from the ischiadic line, behind the *gluteus maximus*.
 Insertion; by a double tendon.

1. One tendon passes through a pulley on the outside of the knee, formed by the tendon of the *biceps* (d) as it passes to its fibular insertion, and is then inserted in the head of the muscle (x), in the calf of the leg.

2. The second insertion is by means of a tendon that goes to the top and front of the tibia; this second tendon also serves to strap down the tendon of the *rectus femoris* (a).

4. *M. biceps femoris* (d), 0·05 oz.
 Origin; from the ilioischium, under and behind the origin of the *gluteus maximus*.
 Insertion; partly into the top of the fibula, forming a pulley for the *agitator cauda* (ε), and an additional strap for the *rectus femoris* (a); and partly by means of another tendon into the head of the *peroneus longus* (γ).

5. *M. semitendinosus* (ε), 0·18 oz.
 Origin; from the posterior point of the tuber ischii.
 Insertion; by a remarkable looped tendon, having one end inserted into the back of lower end of femur, and the other end into the *os calcis*.

6. *M. semimembranosus* (f), 0·11 oz.
 Origin; tuber ischii.
 Insertion; into the top of the tibia, by a tendon common to this muscle and *gracilis*.

The muscles of the calf shown in the figure are the following:—

7. *M. gastrocnemius* (v), 0·14 oz.
 This muscle, as usual, has an outer and inner head.
 Outer head, . 0·11 oz.
 Origin; from the tendon of the great caudal extensor of the thigh, half an inch from its insertion into the outer condyle (vide a, Fig. 20).
 Insertion; into the under side of the outer tarsal bone, and into the plantar fascia.
 Inner head, . 0·03 oz.
 Origin; from the top of fibula and inner condyle of femur.
 Insertion; by a tendon, which unites with that of the outer head before reaching the *os calcis*, under which it passes to be inserted into the outer and under side of the outer tarsal bone.

8. *M. plantaris* (x), 0·04 oz.
 Origin; double; from *rectus femoris* and from *agitator cauda*.
 Insertion; having become partially blended with the outer *gastrocnemius*, it is inserted into the *os calcis*, and under surface of the plantar fascia.
9. *M. peronaeus longus* (y), 0-03 oz.

Origin; from the shaft of the fibula, and from the tendon of the biceps femoris (d).

Insertion; into the outer tarsal bone, uniting with the tendon of the *gastrocnemius*.

10. *MM. tibialis anticus et extensor digitorum communis* (z), 0-11 oz.

Insertion; into the tarsal end of the 1st, 2nd, and 3rd metatarsal bones.

The interlacing of muscles in the thigh and leg of the Crocodile, just described, is very remarkable, and more complicated than that found even in the Ostrich; and at first I was disposed to think that it threw some doubt on the explanation I had given previously of the reason for such an arrangement in the bird's leg. In the case of the Ostrich the necessity for strict simultaneity of action was made evident by the great force of the muscles employed, and the great delicacy of the bones on which they had to act. What could there be in the case of the Crocodile to correspond to such a peculiarity in the case of the Ostrich? After some careful dissection I found the ready answer to my question in the remarkable muscle which I shall now describe.

On clearing away the superficial muscles of the thigh and tail, I found the enormous mass of muscle, figured at b, Fig. (20), which acts as the chief and powerful extensor of the thigh.

11. *M. extensor femoris caudalis* (b),* 1-81 oz.

Origin; from the transverse and inferior spinous processes of the caudal vertebrae, from the 3rd to the 15th, inclusive.

Insertion; into the back of the upper part of the femur, and into a great round tendon, which receives, in particular, the anterior fibres of this enormous muscle, and, passing down the back of the femur, is inserted by a strong common aponeurosis into the outer condyle of the femur, and into the head of the fibula. This common aponeurosis also gives a partial origin to the *gastrocnemius* (a), Fig. 20, and to the *plantaris* (x), Fig. 19.

* This remarkable muscle is noticed and accurately described by Meckel, in tome iii., pp. 152, 153, of his "System der vergleichenden Anatomie" (Halle, 1828); but it is very strange that he transposes its origin and insertion, and seems not to have had any idea of its real use. It is regarded from his point of view as a descriptive anatomist, and without the remotest reference to its final cause. He says:—"Der zweite, tiefere weit dickere Muskel ist von dem ersten [the superficial muscle of the tail] wie einer breiten Binde umgeben, entspringt mit zwei ganz getrennten, 1) einer weit kurzeren, breiten Sehne oben von den hintern Flächen des Oberschenkelbeines; 2) durch eine weit längere, schlankere, unten zwischen den beiden Gelenkknorren desselben Knöchens, und setzt sich an die ganze Seitenfläche der unteren Dornen, so wie der Zwischendornenhaut und die untere Fläche der Wurzeln der Querfortsätze."
There are two muscles, accessory to this great caudal extensor in their action, which are as follows:—

12. *M. extensori femoris caudali accessorius*, . . 0·01 oz.
 Origin; from the fascia covering the great caudal extensor, and by a tendinous head from the *quadratus femoris*, which is also an accessory to the great caudal.
 Insertion; into the looped tendon of the *semimembranosus*, already described.

13. *M. quadratus femoris*,
 0·05 oz.
 Origin; posterior, superior, and inner surface of the pubis, near its symphysis.
 Insertion; into the back of the femur, with the action and position of the *quadratus femoris* in mammal quadrupeds, and into the tendon of the great caudal extensor.

The effect of the interlacing of the tendons of the various muscles already described must be to produce simultaneity of action among them, such as I have already endeavoured to describe in my account of the leg of the Ostrich; and in the present instance of the Crocodile there seems to be a similar principle involved. The Crocodile, resting on mud, progresses chiefly by using his hind feet as paddles; and in this use of them the great caudal extensor of the thigh is the most
powerful and important muscle employed; and it seems to me that the simultaneity of action of all parts of the leg, rendered necessary by the employment of so powerful a muscle, is fully secured by the interlacing of the tendons I have described, which renders it impossible for one set of muscles to act without the others being also exerted.

The remaining muscles of the posterior limb are as follows:—

14. *M. glutaeus medius*, 0·06 oz.
 Origin; from the central part of the ilio-ischiadic surface.
 Insertion; its tendon passes over the great trochanter to be inserted into a line down the upper half of the outside of the femur, between the origins of the two portions of the *vastus externus*.

15. *M. Glutaeus minimus*, 0·02 oz.
 Origin; from the anterior point of the ilium.
 Insertion, into the inner side of the knee, under the fascia of the *rectus femoris*.

16. *MM. vastus internus, externus, et cruratus*, 0·22 oz.
 The *vastus externus* consists of two distinct muscles, as in the Ostrich.

17. *M. psoas*, . 0·57 oz.
 This large muscle takes an origin as high as the last rib, and is inserted into the lesser trochanter, and the intertrochanteric line leading to the outer side of the femur. It lies outside the *iliacus*.

18. *M. iliaca*, . 0·11 oz.
 Origin; from the anterior transverse surface of the ilium, with a slip from the spine.
 Insertion; altogether into the lesser trochanter.

19. *M. sartorius*, . 0·04 oz.
 Origin; behind the origin of the *rectus*, on the inner side, at the junction of the ilium and marsupial bone.
 Insertion; into the fascia of the inner side of the thigh, for two-thirds of its length.

20. *M. gracilis*, . 0·08 oz.
 Takes an origin from two heads—one at the posterior point of the pubis, and the other on the pectineal line.
 Insertion; into the head of the tibia by a tendon common to it with the *seminembranosus*.

21. *M. pectineus*, . 0·06 oz.
 Origin; between the two heads of *gracilis*, from the central part of the surface of the pubis and from the pectineal line.
 Insertion, into the top of the *linea aspera*.

22. *MM. adductores*, . 0·21 oz.
 There are three adductor muscles:—

1st *Adductor*, . 0·13 oz.
Origin; anterior pectineal line of pubis.
Insertion; into the upper half of the linea aspera.

2nd Adductor, . 0·03 oz.
Origin; from the posterior edge of the pubis, its middle third.
Insertion; into the middle of the linea aspera.

3rd Adductor, . 0·05 oz.
Origin; from the posterior edge of the pubis, close to the symphysis.
Insertion; into the back of the top of the fibula, with a fascial union with the tendon of the semitendinosus.

23. M. obturator externus? 0·13 oz.
Origin; from the tuber ischii, the posterior edge of the ischium, and the obturator membrane.
Insertion; into an oblique line on the back of the femur, below the insertion of the quadratus femoris.

24. M. marsupialis externus, 0·07 oz.
25. M. marsupialis internus, 0·10 oz.
These two muscles take their origin, respectively, from the outer surface of the marsupial bone, and from its inner surface and the last abdominal rib; and they are inserted by a common tendon into the top of the posterior intertrochanteric line. Their action is to rotate the femur directly inwards.

26. M. flexor proprius hallucis, 0·02 oz.
Origin; from the outer condyle of femur.
Insertion; into the first, second, and third toes.

27. M. flexor digitorum communis, 0·05 oz.
Origin; from the fibula and tibia.
Insertion; into the first, second, and third toes.

28. M. tibialis posticus, . 0·06 oz.
This muscle is inserted into the tarsal ends of the first, second, and third metatarsal bones.

29. M. peroneo-calcaneus, . 0·01 oz.
Origin; from the lower part of the shaft of the fibula.
Insertion; into the upper surface of the calcaneum.

PART 2.—Dissection of Arm of Crocodile.

The muscular anatomy of the anterior limb of the Crocodile presents no such remarkable peculiarities as those I have described in the leg, and therefore a rapid enumeration of its muscles will be sufficient. It is necessary to bear in mind, for the purpose of comparison with the muscles of the leg, that

The Marsupial bone represents the clavicle;
PUBIS, Pubis, " , " , coracoid;
ILIUM, " , " , acromion;
ISCHIUM, " , " , scapula.
1. *M. trapezius*, . 0·10 oz.
 Origin; from the occipital and cervical scutes, as far back as the
 shoulder joint.
 Insertion; into the anterior edge of the acromion.

2. *M. latissimus dorsi (humerodorsalis)*, 0·12 oz.
 Origin; from the four anterior dorsal scutes.
 Insertion; into the back of the humerus, having its tendon con-
 joined with that of the *teres major*.

3. *M. teres major*, . 0·02 oz.
 Origin; posterior superior portion of scapula.
 Insertion; with *latissimus dorsi*.

4. *M. sterno-atlanticus*, . 0·22 oz.
 Origin; from the sternum, in front of its articulation with the
 coracoid.
 Insertion; into the side of the atlas.

5. *M. pectoralis major*, . 0·77 oz.
 Origin; from top of sternum, and its entire length, and from the
 abdominal ribs two-thirds of the distance to the pelvis.
 Insertion; into the outer edge of the great pectoral ridge of the hu-
 merus.

6. *M. pectoralis minor*, . 0·04 oz.
 Origin; from the outer surface of the acromion and coracoid, lying
 under the tendon of the *biceps humeri*.
 Insertion; inner side of pectoral ridge.
 In this muscle is also included the *supraspinatus*, which is repre-
 sented by the portion of the muscle taking its origin from the scapular
 border of the acromion, inside the origin of the deltoid. These two pec-
 torals draw the arm forward in swimming.

7. *M. pectoralis secundus*, . 0·04 oz.
 Origin; from the first sternal rib.
 Insertion; into the posterior edge of the coracoid.
 This muscle draws the arm backwards, by acting on the coracoid,
 and may represent the second pectoral of birds.

8. *M. sternomastoideus*, . 0·17 oz.
 Origin; from top of sternum.
 Insertion; into the posterior third of inner side of lower jaw.

9. *M. Omo-hyoideus*, . 0·06 oz.
 Origin; from the acromion, just above the glenoid cavity.
 Insertion; into the descending wing of the hyoid bone.

10. *M. deltoideus*, . 0·15 oz.
 Origin; from a broad rim of the acromion, and from the inner sur-
 face of the acromion, winding out over the edge to form the
 inner portion the deltoid.
 Insertion; into the deltoid ridge of the humerus.

11. *M. infraspinatus*, . 0·02 oz.
 Origin; from the outer surface of the scapula, which is altogether
 occupied by this muscle and the *teres major*.
 Origin; from spinous processes of the last cervical and the first dorsal vertebra.
 Insertion; under surface of vertebral edge of scapula.

 Origin; from the transverse processes of the vertebra, from 2nd to 8th, inclusive.
 Insertion; all round the edge of acromion, and anterior and vertebral edge of the scapula.

This muscle is continuous with the next, which may be regarded as equivalent to the scapulocostal *latissimus dorsi* muscle found in the Seal.

 Origin; from the ribs of the 9th to 14th vertebræ, inclusive.
 Insertion; into the posterior edge of the scapula.

 Origin, threefold:—
 1. From the posterior edge of the scapula, near the glenoid;
 2. By a bifurcate tendon from the coracoid and scapula, allowing the *subscapularis* to pass between the two tendons;
 3. From the outer and inner surfaces of the back of the humerus.

 Origin; from the inner surface and anterior edge of the scapula.
 Insertion; into the lesser tuberosity, and into the line leading from it down the inner side of the arm.

17. *M. biceps humeri*, 0-03 oz.
 Origin; from the inner side of the anterior edge of the coracoid, in front of the glenoid.
 Insertion; into the radius.

18. *M. brachialis externus*, 0-03 oz.
 Origin; from the line outside and below the pectoral ridge.
 Insertion; into the radius, outside the insertion of the *biceps*, the tendon of the *brachialis anticus* lying between them.

 This muscle is inserted into the radius, between the insertions of the *biceps* and *brachialis externus*.

22. *M. extensor digitorum communis*, 0-01 oz.

 Origin; from the outer condyle of the humerus.
 Insertion; into the ulna, along the whole length of its outer side.

 Origin, from the radius and ulna, and from the interosseous septum.
 Insertion; into the middle carpal bone.
25. *M. pronator radii*, 0.03 oz.
 Origin; from the inner condyle of the humerus.
 Insertion; into the whole length of the radius.

26. *M. flexor carpi ulnaris*, 0.03 oz.
 Origin; from the inner condyle.
 Insertion; into the outer carpal bone, articulating with the ulna.

27. *M. palmaris (?)*, 0.01 oz.
 Origin; from the inner condyle.
 Insertion; into the tendon of the *flexor digitorum communis* in the centre of the palm. Its force is expended on the index and middle fingers.

28. *M. flexor digitorum communis*, 0.03 oz.
 Origin; from the whole inner surface of the ulna.
 Insertion; into the ungual phalanges of the thumb, index, and middle fingers.

There are, in addition, short flexors in the palm, terminating in the metacarpal ends of the phalanges at each side, allowing the tendon of the long flexor to pass through.

The ring and little fingers seem to be flexed altogether by these palmar tendons.

The Rev. Samuel Haughton, M. D., Fellow of Trinity College, Dublin, also read the following paper:

Notes on Animal Mechanics.

No. VII.—On the Muscular Anatomy of the *Macacus nemestrinus*.

The first monkey which I shall describe in this Note was a very fine specimen of *Macacus nemestrinus*, which died, after a short illness, in January of the present year, of tubercular disease affecting the liver, spleen, and other organs. He had previously suffered from rheumatic arthritis of both knee joints, which had destroyed the anterior surfaces of the outer condyles of the femur, and so caused dislocation of both patellas outwards.

On examination after death, the following observations were made:

1. *Lungs*; both filled with miliary tubercle.
2. *Heart*; exhibited two specks of tubercle, similar to those met with in the lungs.
3. *Liver*; divided into five lobes, of which four were filled with tubercular nodules, and the fifth was wholly converted into a cheesy tuberculous mass.
4. *Spleen*; contained several large nodules of softened tubercle.
5. *Glands*; of mesentery, united into one tubercular mass; of thoracic spinal region, somewhat affected; of lumbar region, healthy.

Weight of dead body, 26 lbs.