
A Methodology for
Software Development
Using VMS Tools

'

\

A Methodology for Software Development
Using VMS Tools
Order Number: AA-HB16C-TE

April 1988

This manual describes how to use VAX Software Engineering Tools (VAX-set)
with other VMS facilities to create an effective software development
environment.

Revision/Update Information: This manual supersedes A Methodology for
Software Development Using VMS Tools
(Order number AA-HB16B-TE).

Operating System and Version: VMS Version 4.6 or higher

Software Version: VAXset Version 6.0

digital equipment corporation
maynard, massachusetts

First Printing, December 1985
First Revision, April 1987
Second Revision, April 1988

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip¬
ment that is not supplied by Digital Equipment Corporation or its affiliated
companies.

Copyright ©1985, 1987, 1988 by Digital Equipment Corporation

All Rights Reserved.

The postpaid Reader's Comments forms at the end of this document request
the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-10
DECSYSTEM-20
DECUS
DECwriter

DIBOL
EduSystem
IAS
MASSBUS
PDP
PDT
RSTS
RSX

UNIBUS
VAX
VAXcluster
VMS
VT

EHSBDSD TM

ZK4708

Contents

PREFACE ,A

CHAPTER 1 THE SOFTWARE DEVELOPMENT LIFE CYCLE 1-1

1.1 OVERVIEW OF THE DEVELOPMENT LIFE CYCLE 1-1

1.2 PROBLEMS OF SOFTWARE DEVELOPMENT 1-4

1.3 ADVANTAGES OF A FORMAL METHODOLOGY 1-7

1.4 TYPICAL COSTS OF DEVELOPMENT 1-8

1.5 USING TOOLS AT EACH STEP IN THE SOFTWARE LIFE CYCLE 1-9

CHAPTER 2 VAXSET TOOLS 2-1

2.1 VAXSET AS A PRODUCTIVITY TOOL 2-2
2.1.1 Additional VAXset Features -- 2-4
2.1.2 VAX DEC/Code Management System - 2-4
2.1.3 VAX Language-Sensitive Editor -- 2-6
2.1.4 VAX Source Code Analyzer - 2-8
2.1.5 VAX DEC/Module Management System - 2-10
2.1.6 VAX DEC/Test Manager-2-11
2.1.7 VAX Performance and Coverage Analyzer - 2-13

2.2 ADDITIONAL VMS TOOLS AND UTILITIES 2-15

CHAPTER 3 SETTING UP A SOFTWARE PROJECT 3-1

3.1 INITIAL PROCEDURES FOR A PROJECT LEADER 3-1
3.1.1 User Accounts and Directory Protection _ 3-2
3.1.2 Project Directory Structure and CMS Libraries _ 3-3
3.1.3 Build Directories _ 3_6

3.1.3.1 MMS Description File • 3-8
3.1.3.2 Reference Copy Area • 3-9

3.1.4 SCA Libraries ____ 3-11
3.1.4.1 Project-Wide Development *3-12
3.1.4.2 Incremental Development *3-12

3.1.5 DTM Libraries __ 3-15
3.1.6 Project Standards _ 3-18
3.1.7 LSE Templates __ 3-21
3.1.8 LSE Logical Names ___ 3-22
3.1.9 Communication Management and Report

Mechanisms ____ 3-23
3.1.9.1 Communication Within Your Project • 3-24

3.1.9.2 Communication Outside Your Project • 3-24
3.1.9.3 Documentation Reviews • 3-26

3.2 ONGOING PROCEDURES FOR A PROJECT LEADER 3-26
3.2.1 Extending the Library Structure , __ 3-27
3.2.2 Establishing Project and Personal Build Procedures _ 3-27

3.2.2.1 Personal Build Procedures • 3-27

3.2.2.2 Project Build Procedures • 3-28
3.2.2.3 Access to SCA Libraries • 3-29
3.2.2.4 Access to Source Files • 3-30

3.2.3 Setting Up Tests ____ 3-32
3.2.4 Analyzing Performance and Coverage _ 3-35
3.2.5 Monitoring Project Progress __ 3—35
3.2.6 Using the VAX Software Project Manager _ 3-36
3.2.7 Tracking Reports During Field Testing _ 3-38
3.2.8 Final Steps in a Project __3-41

iv

4-1 CHAPTER 4 USING TOOLS ON A SOFTWARE PROJECT

4.1 SETTING UP DIRECTORIES 4-1
4.1.1 Directory Structure -— 4-2
4.1.2 Creating Directories and Libraries - 4-3

4.1.2.1 Restricting Access with ACLs • 4-5
4.1.2.2 Access Control for Large Projects • 4-6

4.2 MAINTAINING CMS SOURCE LIBRARIES 4-12
4.2.1 Storing Files in a CMS Library - 4—12
4.2.2 Modifying Elements ____ 4—13
4.2.3 Concurrent Access _ 4-14
4.2.4 Creating Classes -—- 4-16
4.2.5 Retrieving Class Contents and Preparing a Build - 4—17

4.3 SETTING DEFAULTS WITH A LOGIN.COM FILE 4-19
4.3.1 Environment File for LSE - 4-20
4.3.2 Command Files - 4-23

4.4 DEBUGGING SOURCE CODE 4-25

4.5 EDITING A SOURCE FILE WITH LSE 4-34

4.6 COMPILING AND LINKING A MODIFIED FILE 4-38

4.7 SETTING UP THE TEST SYSTEM 4-38
4.7.1 Setting Up a Noninteractive Test - 4-39
4.7.2 Setting Up an Interactive Test - 4-45
4.7.3 Verifying Your Test System - 4-50
4.7.4 Changing Input for a Test - 4-50

4.8 BUILDING THE SYSTEM 4-51

4.9 USING THE DTM REVIEW SUBSYSTEM 4-62
4.9.1 Selecting the Result File from DTM Review - 4-63
4.9.2 Using the SHOW/DIFFERENCES Command - 4—64
4.9.3 Invoking PCA from the REVIEW Subsystem - 4—66

v

4.9.4 Invoking LSE from PCA __ 4-67
4.9.5 Using the Analyzer to Perform a Call Tree Analysis _ 4-69

4.10 MAINTAINING THE APPLICATION 4-72
4.10.1 CMS Provides History _ 4-72
4.10.2 SCA Provides Structural Information _ 4-73
4.10.3 MMS Simplifies Maintenance _ 4-74
4.10.4 CMS Used with MMS for Maintenance _ 4-75

INDEX

EXAMPLES

4-1 Sample LOGIN.COM File 4-24

4-2 Project Logical Definitions File 4-25

4-3 Sample Collection Prologue File —
COLLECTION_PROLOGUE.COM 4-40

4-4 Sample Collection Epilogue File —
COLLECTION_EPILOGUE.COM 4-41

4-5 TRANSLIT Test Template File — TRANSLIT_TEST.COM 4-43
4-6 A Build Procedure Using an MMS Description File 4-52
4-7 Flags and Macros Section of the Description File 4-55
4-8 Rules Section of the Description File 4-59
4-9 Targets Section of the Description File 4-60
4-10 Sample Annotated Source Code Listing 4-68
4-11 Static Call Tree Analysis 4-70
4-12 Dynamic Call Tree Analysis 4-71
4-13 Dependencies in an MMS Description File 4-75

VI

FIGURES

1-1

1-2

1-3

3-1

3-2

Model of the Software Development Cycle

Costs over the Software Development Life Cycle

1-2

1-8

VMS Tools Used in the Software Development Life Cycle

Initial Storage Areas for a Typical Project

1-10

3-4

Build Directory Hierarchy 3-7

3-3 Filling an SCA l ibrary 3-12

3-4 Physical versus Virtual SCA Librarian

T

CO

3 5 Dirertorv Structure Showinq DTM Libraries 3-16

3-6

3 7

Initial Storage Areas for a Typical Project 3-22

Working SCA Libraries for Developers 3-29

3-8

3-9

Source Code Management 3-31

Grouping Test Desrriptinns 3-34

4-1

4-2

CMS Library with Two Generations 4-13

Variants in a 1 ihrary 4-15

4-3 Merging with CMS 1 ihraries 4-16

4-4

4—5

Classes in a f'-MS 1 ihrary 4-17

Description File as Part of a CMS Class 4-19

4-6

4-7

4-8

4-9

Extracting a Token 4-21

Creating an Fnwironment File 4-22

Steps to Implement node 4-26

Problem Source Code from the Debugger 4-28

4-10

4-11

4-12

4-13

4-14

4-15

4-16

4-17

4-18

The EXAMINE Command in the Debugger 4-29

Fxitinn +ho Dehunner to 1 SF 4-30

GOTO PFCI ARATinN jn snA 4-32

Navinatinn Rased on F1MResults 4-33

Using a Token with l SF 4-35

FvnanHinn an 1 SF Token 4-36

Pnmnlotinn Dhannes to Code 4-37

Samnle SHOW/DIFFERENCES Output — Screen 0 4-64

Sample SHOW/DIFFERENCES Output — Screen 13 4-65

vii

TABLES

3-1 Examples of Logical Names for Directories 3-23

3-2 Keywords for a Sample QAR System 3-40

4-1 Project's Directories 4-2

4-2 MMS Description File Command Options 4-62

viii

Preface

This manual explains how to use VAX Software Engineering Tools
(VAXset) with other VMS facilities to create or customize an effective
software development environment. In particular, this manual highlights
the integration features of the six tools that make up the VAXset package.

Intended Audience

This manual is intended for programmers, software engineers, and project
managers using one or more of the VAXset tools. The users should be
familiar with the VMS operating system, VMS program development
facilities, and VMS utilities.

Manual Structure

This manual consists of four chapters. The topics covered in each chapter

are as follows:

• Chapter 1, The Software Development Life Cycle, describes the
software development life cycle, associated problems, and the role of
VAXset tools and VMS facilities during the life cycle.

• Chapter 2, VAXset Tools, provides an overview of VAXset and other
VMS tools that support the VMS software development environment.

• Chapter 3, Setting Up a Software Project, describes how to inte¬
grate the VAXset tools and facilities into your software development
environment to help manage development tasks.

• Chapter 4, Using Tools on a Software Project, describes how the
VAXset tools can be used in a software development project.

ix

Associated Documents

The following publications provide additional information about the VMS
operating system and the VAXset tools discussed in this manual:

• The VAX/VMS documentation set

• The Guide to VAX Language-Sensitive Editor and VAX Source Code
Analyzer

• The Guide to VAX DEC/Code Management System

• The Guide to VAX DEC/Module Management System

• The Guide to VAX DEC/Test Manager

• The Guide to VAX Performance and Coverage Analyzer

• The Introduction to Application Development

• The Introduction to Database Development

Conventions

Convention Meaning

LSE> RESERVE Interactive examples show all output lines or prompting
characters that the system prints or displays in black
letters. All user-entered commands are shown in red
letters.

[expression] Square brackets indicate that the enclosed item is optional.
(Square brackets are not, however, optional in the syntax
of a directory name in a file specification.)

element Italicized lettering indicates a term that is defined in the
text.

CTRL/x The phrase CTRL/x indicates that you must press the key
labeled CTRL while you simultaneously press another
key, for example, CTRL/E, CTRL/W.

X

Chapter 1

The Software Development Life Cycle

This chapter provides an overview of the software development life cycle
and the problems typically encountered in the process of developing
software. This chapter then describes the advantages to be gained by
adopting a formal development methodology to deal with these problems,
showing the VAXset and VMS tools that can be used at each stage in
the software life cycle to automate many procedures and mitigate the

problems.

1.1 Overview of the Development Life Cycle

Figure 1-1 shows a model of the software development process. The
arrows demonstrate the iterative process involved in developing software,
showing that the process involves repeated loops as previous work
becomes obsolete and recycled.

The following sections describe the different phases of the develop¬
ment life cycle as generally practiced at DIGITAL and as summarized in

Figure 1-1.

The Software Development Life Cycle 1-1

Figure 1-1: Model of the Software Development Cycle

ZK-5950HC

Phase 1: Requirements and Specifications

This first phase in the software development life cycle defines the project,
and it takes place in two distinct steps: the requirements step and the
specifications step. During the requirements step, a project team of
technical and management people identify business opportunities, product
objectives, and technical options. They may also perform an analysis of
the costs versus benefits for the application. During the specifications step
that follows, the project team formulates detailed specifications that define
what the system will do and how it will be used.

Defining the project's requirements depends heavily on feedback from
outside the team — from customers, from any internal users, and possibly
from marketing. Other groups within an organization also provide infor¬
mation — a central quality group, and engineering departments. When
the team has completed the requirements step, they have defined project
goals: essentially, what is to be built, but not how to build it. Documents
typically produced during the requirements step include a requirements
document and a business plan.

During the specifications step, the project team also maps out technical
approaches for building the new application. Often, the team produces
prototypes to help solve difficult technical problems. These prototypes
can be tested, providing references for future development work. These
prototypes, in turn, help ensure that the team understands the risks
involved with implementing the product and, optionally, help develop
usability requirements, if the team chooses to subject the prototypes
to human engineering testing. By comparing the specifications to the

1-2 The Software Development Life Cycle

requirements, the project team members can show that if the system is
built as specified, it will meet its requirements. At the end of this stage,
the project team has defined the application, has produced a preliminary
functional specification, and must decide whether or not to go forward
with the project.

Phase 2: Design

During the design phase, the project team determines more precisely what
they must build and how to build it. The first step is to write the final
specifications for development and documentation.

Based on the functional specifications (and, optionally, usability require¬
ments), the project team completes top-level design for all forms, data
structures, program modules, file formats, and human interfaces. Once
complete, the design technically defines the project.

To document the design, the team generates a design specification and test
plan to serve as a basis for acceptance by strategic and technical planners.
It is important to have the design standards and policies documented in
this specification. The team includes resource estimates as part of the
design; these estimates approximate the time needed to implement a
particular piece of functionality. As project designs evolve, the team can
modify the design specification to include new developments. This design
document makes it possible to keep the design plans in one location,
accessible to all programmers. Once the design is complete, it is possible
to develop a schedule as well, which is included in the design document
and applies to each deliverable item in the project.

As part of the design process, the team should also refine its procedural
methodology to aid in completing the project. By the end of this phase,
the team should have established storage areas (libraries and a basic
directory structure) and implementation standards.

Phase 3: Implementation

During the implementation phase, the team builds and modifies source
code modules, then compiles, links, and executes the resulting images.
Often the team implements the system in a series of stages or base levels.
Each base level adds more of the required functionality. Along with the
software, the team must generate user documentation, which remains
up-to-date with the ongoing changes in the software's features.

At the end of this phase, the project team arranges for master copies of the
user documentation and the software to be handed over to a production
group that copies and distributes the product to customers. A final task is
to archive copies of the product and distribute it.

The Software Development Life Cycle 1-3

Phase 4: Testing

During the testing phase (which usually runs parallel with the imple¬
mentation phase), the project team tests the software to make sure that
it conforms to the initial requirements. The team then fine tunes the
application's code to optimize its performance. To aid in this refinement
stage, the application may be made available to selected customer sites.
The project team stays in close contact with these test sites to ensure that
any problems are corrected in the version of the software or user docu¬
mentation shipped to general customers. In the final stages of this phase,
the source code and documentation are frozen, and, if necessary, the team
prepares final copies of the documentation and distribution media.

Phase 5: Maintenance

After the product has been shipped, a process of maintenance and evolu¬
tion begins. If errors exist in the software or documentation, the mainte¬
nance team makes the necessary changes. Enhancements may be planned.
At the same time, suggestions for new requirements arrive from customers.
This phase becomes an information-gathering activity that can begin the
early phases for the next version of the software.

1.2 Problems of Software Development

Projects get more complex every day. This can make a project team
scramble just to keep up with the job. Without a good methodology and a
strong support environment, a team can face problems like the following:

• Disorganized information

• Too many dependencies in the code and files to track

• Too many channels of communication

• Too many revisions

• Not enough people

• Not enough time

• Awkward, nonautomated development procedures

1-4 The Software Development Life Cycle

Complexity Problems

The increasing complexity and size of software applications can create a
range of problems. These include the following:

• Applications consisting of many modules

A large number of modules makes it difficult to verify that all the
input modules for a portion of the design are available and that the
system build incorporates the appropriate version of each.

• Code size

Too many lines of code make a team develop and test the application
in a series of repeated steps rather than writing all the code before
testing any of it. This causes problems identifying which version of
a module to use. Also, this makes it necessary to work on different
parts of the product in parallel in order to meet deadlines. In this
situation, programmers often concurrently modify the same module.
This can cause conflicting or lost changes. Another complication that
arises with a large number of code lines is that it becomes increasingly
difficult for one person to know the whole application well.

• Dependencies among modules

Changes in one module may require changes to other modules.

• Multiple products

Frequently, a development team builds similar but not identical
products as part of one project. For example, the team may need
to build a screen management package to support different types of
terminals, or an application that runs on more than one operating
system. Problems can occur in identifying the appropriate version of
each component when the team builds the product.

• Rising development costs

The cost of developing increasingly sophisticated applications rises
because of the greater commitments of time and resources.

Problems Related to Changes Over Time

The gradual development of an application and the process of upgrading
the software can create problems. These include the following.

The Software Development Life Cycle 1-5

• Visibility of new work

On large projects, team members may not have equal access to all
parts of the application; modified modules may be made available
only after periodic builds. Therefore, developers may be working on
outdated versions.

• Obsolescence

Initial modules and requirements specification documents often need
to change in response to ongoing developments in modules that
make up the application. Once obsolete, these modules must be either
rebuilt in the correct order or modified in a manner that corresponds to
the changes in the input modules. However, difficulties may arise in
trying to find all the related modules to make the necessary changes.

• Increased maintenance

Greater sophistication in the software combines with increasingly
high expectations from customers to force greater maintenance com¬
mitments, both in terms of correcting errors and enhancing current
products. Balancing performance against ease-of-use also presents
testing and maintenance complications.

• New personnel

Over time, new people who are not familiar with the code join a
project team. It can become increasingly difficult to get new people up
to speed with procedures and code that have grown complex.

Problems Related to People

Software development depends upon the work and creative interaction of
people. Problems can arise by the very nature of these interactions. These
include the following:

• Start-up time

People who join a project do not become productive immediately.
They must learn how a project is organized and what their tasks will
be. They may even need to learn one or more of the languages used
on the application, along with learning how to use productivity tools.

• Varied coding practices

One programmer may vary from another in his or her familiarity with
coding languages and with coding standards. Frequently, program¬
mers do not all follow consistent coding standards, thereby increasing
the difficulty of working on each other's code. This problem may be

1-6 The Software Development Life Cycle

compounded by turnover among members of the team that often takes
place before the product is fully developed.

• Work procedures

A project team must have control over the work procedures among its
members. For example, several developers may need to change the
same module simultaneously. One developer's work can affect an¬
other developer's work. As the number of these interactions increases,
so does the complexity of the development effort.

• Mistakes

People make coding errors when implementing a design. People can
also damage project data by mistakes, such as modifying the wrong
modules, deleting the wrong files, and so on.

1.3 Advantages of a Formal Methodology

One good way to handle the complexities and problems listed in the
previous section is to adopt a formal development methodology. A
planned strategy allows a team to automate some of the repetitive tasks of
the life cycle and manage projects of increasing size and complexity more
easily. Additionally, the software development team can begin to benefit
consistently and fully from software productivity tools.

A formal methodology, particularly one shared across projects, provides
greater consistency in the process of software development. A consistent
development process gives the team better control over its own work.
It is also easier to bring new people up-to-speed when the process is
well-defined. Furthermore, when team members move to other projects,
they will not have to learn new methods. Additionally, managers and
supervisors can better monitor the progress of more than one team. They
will know the milestones to expect as each project evolves.

Finally, a formal methodology allows a team to effectively control its
management tasks; these include such things as source code control and
tracking, system build procedures, problem reporting and tracking, and
consistent testing. The increasing complexity of software projects makes
these management tasks correspondingly difficult and time consuming.
An effective and planned methodology prevents developers from wasting
time and losing productivity. Many of the problems that occur in a
project's later stages could be avoided by adequately establishing an
overall mechanism for project development from the beginning.

The Software Development Life Cycle 1-7

1.4 Typical Costs of Development

Each stage of the development life cycle has costs associated with it that
may vary from development team to development team. Figure 1-2 shows
a typical view of the costs of software development.

Figure 1-2: Costs over the Software Development Life Cycle

ZK-5947-HC

As shown in Figure 1-2, advanced design, implementation, testing, and
maintenance can account for up to 80 percent of a project's costs.

1-8 The Software Development Life Cycle

1.5 Using Tools at Each Step in the Software Life Cycle

The key to reducing the problems associated with the development
cycle is to provide developers with a consistent support environment in
which to work. The VMS tools environment helps developers manage
the complexity of their project by automating many of the procedures.
Figure 1-3 shows the integration of a number of VMS tools, mainly
VAXset tools, with the software development life cycle. The black bars
show where in the life cycle the corresponding tools have their primary
purpose. The light bars show where the corresponding tools can be used,

The Software Development Life Cycle 1-9

Figure 1-3: VMS Tools Used in the Software Development Life Cycle

Requirements and

1-10 The Software Development Life Cycle

Chapter 2

VAXset Tools

This chapter summarizes the features of the VAX Software Engineering
Tools (VAXset), highlighting how the tools address the problems
associated with software development described in the previous chapter.
Although each tool is described in its own documentation set, this book
presents a special focus on the tools integration—how you can use the
tools together and take advantage of numerous tool-to-tool links.

The VAXset tools, available individually and as part of the VAXset collec¬
tion, are as follows:

• VAX Language-Sensitive Editor (LSE)

• VAX Source Code Analyzer (SCA)

• VAX DEC/Code Management System (CMS)

• VAX DEC/Module Management System (MMS)

• VAX DEC/Test Manager (DTM)

• VAX Performance and Coverage Analyzer (PCA)

These tools combine with the VMS operating system to make for an
integrated software development environment.

VAXset Tools 2-1

2.1 VAXset as a Productivity Tool

Using the VAXset tools together, you can avoid many of the problems
typically associated with software development. This section lists common
problem areas along with the VAXset tool or tools that are designed to
solve them.

Productivity

VAXset tools help improve productivity by automating tasks such as code
or text entry (LSE), source retrieval (CMS), build procedures (MMS), and
testing (DTM). SCA lets developers quickly move through a project's
sources while searching out definitions and references to symbols. In
addition, SCA helps new developers learn the internal structure of a
project's code. Together, these tools help create applications more quickly
and with lower development costs.

Software Reliability

Using VAXset tools, you can build predictable and reliable software that
meets the intended requirements and specifications. LSE helps developers
enter accurate code through its language support. SCA provides analysis,
such as call checking. MMS provides a consistent means of building an
application. DTM simplifies the testing of code and helps manage test
systems, thus helping a team to avoid errors in code implementation.
PCA helps you develop more effective tests by analyzing the coverage
afforded by the test data.

Maintenance

VAXset tools help build software that is easier and less expensive to
maintain. CMS stores the sources efficiently, making retrieval easy with
its history tracking and class features. SCA helps maintainers quickly
understand a system and the effects of any changes made to the code.
MMS rebuilds the application accurately and easily for a maintenance
team. With DTM, the team has the means to retest the application using
the same tests developed by the implementation team, and to add tests for
problems that are corrected.

2-2 VAXset Tools

Problem Identification

VAXset tools help identify problems early in the development life cy¬
cle through ongoing verification. Initially, the compilers and the VMS
Debugger are used to identify the problem. PCA makes it easier to
identify performance bottlenecks. DTM alerts a team to regressive de¬
velopments in their software. SC A then becomes the means to trace the
dependencies of that problem code, making clear any effects that apply
across the application's modules.

Effective Project Management

VAXset tools simplify the managing, tracking, and controlling of your
project. CMS provides a reliable storage area for your files while tracking
all major transactions on library contents. Additionally, it allows develop¬
ers to work concurrently on the same files, while ensuring that changes
will not be lost. MMS consistently builds your application, while at the
same time carrying out DTM test procedures automatically. By means of
DTM epilogues, reports can be sent to team members informing them of
the latest test results. The VAX Software Project Manager (PM), though
not part of VAXset, provides a package of tools for planning, scheduling,
estimating, and controlling software projects.

Program Compatibility

Multilanguage programs let you reuse existing code, or share code with
another project even if the code is written in a different language. All the
VAXset tools support applications written in more than one language.

Performance

Developers can more easily identify performance problems in the source
code. PCA identifies bottlenecks in performance, and when used with
DTM, provides an analysis of code coverage.

The following sections briefly describe the features of each of the VAXset
tools.

VAXset Tools 2-3

2.1.1 Additional VAXset Features

The VAXset features also include the following:

• Support for most VAX languages.

• Access from the VMS Debugger and VMS Mail.

• Use of the DIGITAL Command Language (DCL) or the VAX
DEC/Shell command language (a UNIX® -like interface to the VMS
operating system) to invoke the individual VAXset tools.

• Compatibility with all VAX processors.

• Consistent online HELP.

• Adherence to the VMS calling standard.

• Consistent installation procedures through VMSINSTAL.

• Integration among tools. For example, LSE can obtain files from CMS;
PCA can be used with DTM to ensure that tests cover important code
paths; Debug can invoke LSE, and so on.

2.1.2 VAX DEC/Code Management System

The VAX DEC/Code Management System (CMS) provides a method for
storing files in your project and tracking all changes to those files. Code
management is especially important on large projects with long time spans
and multiple versions of the developing software.

CMS works on any kind of file, such as files created by an editor, a
compiler, or a linker. You can use CMS effectively to store documents,
plans, specifications, status reports, object files, executable images, sixel
files, or other records. (CMS cannot store directory files.) Thus, it is a tool
that all team members can use — managers, system analysts, technical
writers, and programmers.

CMS also supports the VAX Distributed File Service (DFS), allowing you
to work with libraries on disks accessed by DFS.

(R)
UNIX is a registered trademark of AT&T in the US and other countries.

2-4 VAXset Tools

Features of CMS

CMS performs the following functions:

• Keeps track of files at every stage of development by showing who
made changes, when, and why.

• Monitors changes in files to avoid conflict.

• Allows different team members to work concurrently on the same file
without the danger of losing the changes made by any team member,

while reporting any conflicts.

• Conserves disk space as it stores your sources for documentation and

code.

• Generates project activity reports.

• Maintains a history of library activity.

• Stores files from other software development tools.

CMS Libraries
CMS keeps your files in project libraries, which are single VMS directories.
These directories store your project's files, or elements, as well as history
information. As the project evolves, CMS tracks changes to a project
library by storing only the changes made to a file with each reservation
and replacement. Not only does this dramatically reduce the amount
of disk space used for storing multiple versions of files, it allows CMS
to reconstruct any previous version of a file, and to easily identify the
changes made between any two versions, or generations.

In addition to storing successive changes, CMS maintains a record of who
is currently working on a library element and a historical record of library
access By issuing CMS commands, team members can easily retrieve
information about library transactions and contents. A project leader
can restrict access to the library or individual elements by using security
features such as Access Control Lists (ACLs), User Identification Codes
(UICs), and rights identifiers. See Chapter 4 for examples of how to use

these features.

The CMS library provides a record of the following:

• Transactions that created specific element generations.

• Transactions related to the evolution of a specific element.

• The entire transaction history of the library; that is, all actions which
create, delete, or modify the library or its contents.

VAXset Tools 2-5

Groups and Classes

CMS can create both functional and time-phased collections of elements.
Groups are functional collections of elements in the CMS library that
are combined for easy handling. For instance, you can make a group of
all the project documents. With one command, you can reserve all the
documents at once from the library. In other words, groups allow you to
easily manipulate large numbers of related elements.

Classes are time-phased collections of elements that represent a current
or past state of the application. A class contains one generation of each
element that makes up the application. At DIGITAL, a common use of
mis feature is to specify a base level or version of the software system
This base level or version represents a major stage in the system, perhap
a held test version or a version ready for customer release

s

CMS Integration

Ca.nT ™okf. CMS directly within the VAX Language-Sensitive
Editor (LSE), allowing you to access CMS elements. LSE commands then
let you manipulate CMS elements from the LSE command line.

Because CMS can store any file as an element, it is particularly useful as
a central repository, not only for source files for code and documentation,
but also for a variety of hies generated by other VMS tools. CMS can
store description hies for the VAX DEC/Module Management System, and
test hies (prologue, template, epilogue) for the VAX DEC/Test Manager
as well as the tests themselves, and results description Hies (benchmarks)
These tools can also access elements in CMS libraries automatically And
as developers modify the Hies, CMS can track the changes. CMS has a

metrics mter^ace and can customized to assist in collecting project

2.1.3 VAX Language-Sensitive Editor

The VAX Language-Sensitive Editor (LSE) is a multilanguage, pro¬
grammable editor specifically designed to help develop and maintain

A/AYxmn6- LJSE 1S layered on toP of the VAX Text Processing Utility
(VAXTPU), and is available with the EVE and EDT interfaces. LSE pro¬
vides language-specific templates for each language it supports. These
templates help both the novice and the experienced programmer build
syntactically correct programs faster and with fewer errors.

2-6 VAXset Tools

Features of LSE

The VAX Language-Sensitive Editor provides the following features:

• Syntax support for each of the VAX languages and products it supports

(and support LSE):

VAX Ada
VAX BASIC
VAX BLISS-32
VAX C
VAX CDD
VAX COBOL
VAX DATATRIEVE
VAX DIBOL
VAX DOCUMENT
VAX FORTRAN
VAX MACRO-32
VAX Pascal
VAXELN Pascal
VAX PL/I
VAX SCAN

• Language-specific source code templates to quickly and efficiently

enter source code.

• Compiling, reviewing, and correcting of compile-time errors within a

single editing session.

• Interactive editing capabilities during a debugging session.

• Ability to modify existing language environments or to define an

environment.

• Integrated access to the cross-referencing features of SCA.

• Support for inspection of library elements based on SCA or diagnostics

file information.

• Support for a package facility for defining your own subroutine call
templates. LSE packages allow you to specify a subroutine and its
calling sequence once, and then have tokens and placeholders for
the subroutine and its parameters available for use by multiple LSE
language environments.

• Support for user-written diagnostic files, enhancing support for user-
modified or nonsupported compilers.

VAXset Tools 2-7

LSE Integration

LSE is closely integrated with the VMS development environment LSE
works with supported languages to provide a highly interactive envi¬
ronment for source code development. Without ever leaving the LSE
environment, you can create and edit code, compile and review that code,
and correct compile-time errors. Furthermore, you can invoke LSE directly
from the VMS Debugger to correct source errors found during a debugging

The VAX Language-Sensitive Editor has the ability to move among
anguages in different buffers. LSE determines the language you are using

by the file type, thereby providing the proper interface for the appropriate
compiler and calling up the language-specific templates and online HELP.

LSE is integrated with CMS to provide source code management. From
LSE, you can issue commands that direct how you want LSE to obtain
a hie from CMS. For example, you can obtain a read-only copy of a
generation with the GOTO FILE command, which instructs CMS to
perform a FETCH operation. You can also use the RESERVE command to
reserve a generation of a CMS element and have that generation placed in

fault directory- See Section 4.2.2 for more details and an example
of LSE s integration with CMS. v

LSE is integrated with the VAX Source Code Analyzer (see Section 2.1 4
!°r details)- You can also invoke LSE from the Analyzer portion of
the VAX Performance and Coverage Analyzer (see Section 2.1.7 for more
details) or from VMS Mail. Chapter 4 provides additional examples of
LSE s integration with other VMS tools.

2.1.4 VAX Source Code Analyzer

The VAX Source Code Analyzer (SCA) is a multilanguage, multimodule,
interactive cross-reference and static analysis tool. It can help you to
understand the complexities of a large software project by allowing you to
make inquiries about the symbols used in the project's code. With SCA
you can easily move through all your project's sources, quickly locating'
the definitions of any identifier, or any references made to that identifier.

2-8 VAXset Tools

Features of SCA

SCA's cross-referencing capabilities provide information about program
symbols and source files for applications written in the following sup¬
ported languages:

VAX Ada
VAX BASIC
VAX BLISS-32
VAX C
VAX FORTRAN
VAX MACRO
VAX Pascal
VAX PL/I

Cross-reference features are provided by the FIND command, and allow
you to do the following:

• Locate names and the occurrences (uses) of names.

• Query a specified set of names (or partial names, using wildcard
characters).

• Limit a query to specific characteristics, such as routine names, variable
names, or source files.

• Limit a query to specific occurrences, such as the primary declaration
of a symbol, read or write occurrences of a symbol, or occurrences of

a file name.

For example, SCA's cross-referencing capability will quickly let you find
all the locations where a symbol is used throughout an application. It will
also allow you to better understand the implications of any changes to
code using a specific symbol.

SCA's static analysis capabilities let you get information about program
structure; that is, the interrelation of routines, symbols, and files. Features
include the following:

• The display of routine call relationships relative to a specified routine.

• The analysis of routine calls for consistency, with specific regard to the
numbers and data types of arguments passed and the types of values
returned.

VAXset Tools 2-9

LSE/SCA Integration

Using LSE and SCA together creates an extremely powerful, integrated
editing environment. Instead of relying on memory, cross-reference
listings, or guesswork to locate items, you can access your entire system
quickly from LSE. You can browse through all your code to look for
specific declarations of symbols or other pertinent information without
regard to file location, giving you a considerable time saving.

LSE and SCA are part of the multilanguage environment on the VMS
operating system. Your source code may be written in more than one
language; LSE always provides you with the right language support for
the file you are editing. Likewise, SCA lets you navigate through your
entire project regardless of the languages used in each module.

In addition, SCA lets you access, from within LSE, all the sources for
your project. Because these capabilities are available from within LSE,
a developer saves considerable time when finding particular symbols,
retrieving the related files from a reference copy area or a CMS library,
and then editing the files.

2.1.5 VAX DEC/Module Management System

VAX DEC/Module Management System (MMS) automates and simplifies
the building of software applications, whether they are simple programs of
only one or two files or complex programs consisting of many source files,
message files, and documentation. MMS can optimize the build process
by rebuilding only those components of a system that have changed since
the system was last built. In this way, MMS eliminates the wasted steps
of recompiling and linking modules that have not changed. Once set up,
MMS can build both small and large systems with one command.

Features of MMS

MMS provides the following features:

• Increases the speed of building a system because it builds only the
parts that need building.

• Increases the accuracy of the build because MMS consistently repro¬
duces the same system each time you build it.

2-10 VAXset Tools

When you initially use MMS to build your application, you perform two
steps:

1. Create a description file.

2. Invoke MMS to carry out the build.

The description file is an ASCII text file that contains rules describing
how the components of your application are related and the commands
that MMS uses to build the application. Once you create your description
file, you can use it every time you invoke MMS to build your system.
In addition, this description file keeps all the application's structural
information in one place, giving a clear representation of the application,
while at the same time making the build procedure available to all team

members.

MMS Integration

Because MMS is part of the overall tools environment, you can access
elements in CMS libraries during your build. All files used for the build,
documentation, and the MMS description file can be kept in a CMS
library. All these files can be updated, including the description file,
so that MMS works with the latest sources your team has produced.
Alternatively, your MMS description file can build from CMS classes that
represent previous versions of your system. Additionally, MMS can access
records stored in the Common Data Dictionary (VAX CDD) or forms
stored in libraries for VAX Forms Management System (FMS).

MMS also provides support for SCA, in that analysis data can be automat¬
ically generated as part of the MMS build procedure for storage in an SCA

library.

2.1.6 VAX DEC/Test Manager

The VAX DEC/Test Manager (DTM) organizes software tests and au¬
tomates the way you run tests and evaluate test results. DTM uses the
concept of regression testing, a procedure in which you run established
software tests and compare the current test results with previously es¬
tablished benchmark results. These benchmark results, retained from
previous testing, must be duplicated if the software is functioning prop¬
erly. If the current results do not agree with the benchmark results, the
modified software may contain errors. If this is the case, the software
has regressed in that it deviates from previously established behavior.
DTM allows you to quickly discover any regressive developments in your
software.

VAXset Tools 2-11

Features of DTM

DTM provides the following features:

• Lets you create descriptions of software tests.

• Allows you to group these test descriptions into meaningful combina¬
tions for later runs.

• Executes specific tests, groups of tests, and combinations of test
groups, either interactively or in batch mode.

• Compares the results of each executed test with its benchmark test
results to determine differences.

• Lets you capture terminal sessions to be used as test scripts.

• Lets you test interactive applications in batch mode. This includes ap¬
plications that normally need to interact with a terminal; for example,
an editor or a menu system.

• Lets you examine test result files interactively.

• Generates summary reports of test set runs.

• Sets up the test environment so that tests are executed under con¬
trolled conditions.

DTM Integration

You can use the storage and update capabilities of CMS for DTM's
templates, benchmark files, test data files, prologue files, and epilogue
files. When stored in a CMS library, these files can be retrieved by DTM
to run specified versions of tests. This feature can be useful in testing
multiple versions of a software system in situations where the expected
results change from version to version. For example, you can run previous
versions of tests and compare their results against the results that were
valid for the corresponding maintenance version of a system. Thus, CMS
allows you to easily store and access the tests that correspond to older
versions of the system still being maintained.

By using DTM with the VAX Performance and Coverage Analyzer, you
can measure the performance or coverage of tests run under DTM control.
Using an MMS description file to build your application, you can also
execute your tests automatically. Examples of these types of integration
are detailed in Chapter 4.

2-12 VAXset Tools

2.1.7 VAX Performance and Coverage Analyzer

The VAX Performance and Coverage Analyzer (PCA) helps you analyze
the run-time behavior of your application. PCA serves two functions:

• Pinpoints execution bottlenecks, and then allows you to determine the

cause of them.

• Analyzes test coverage by measuring what parts of an application are
or are not executed by a given set of test data. Using this information,
you can create tests that thoroughly exercise your application.

PCA consists of two facilities: the Collector and the Analyzer. When you
link the Collector with your application, the Collector gathers and deposits
data into a file during execution. After execution, you can invoke the
Analyzer to interactively analyze the data stored in that file.

Features of PCA

The features of PCA are presented here in three categories: Collector
features, Analyzer features, and productivity features.

• Collector features. The Collector gathers the following kinds of data:

— Program counter sampling data. Provides a good overview of
where your program consumes the most time.

— Page fault data. Helps you to determine what sections of the
program cause the most page faults.

— System services data. Tells you which sections of the program call
system services.

— Input/Output data. Details all VAX Record Management Services
(RMS) calls in your program, helping you to understand your
program's input/output behavior.

— Exact execution counts. Tells you the exact number of times your
program executes at specified locations, thereby helping you to
find the inefficient algorithms (for example, the 0(n2) algorithms).

— Test coverage data. Shows you which sections of code are or are
not executed when you test run your program.

— Tasking data. Shows all context switches in VAX Ada multitasking
applications.

VAXset Tools 2-13

In addition, PCA allows you to selectively state which of these
measurements should also include the current set of return addresses
on the stack (except for page faults and tasking data). This allows you
to determine relationships among the called subroutines.

• Analyzer features. The Analyzer reads the performance data file
written by the Collector and uses the data to produce the following
types of symbolic reductions that help you to evaluate your program's
performance or coverage:

Histograms and tables. The Analyzer allows you to produce
performance histograms that plot the distribution of resource
usage over your program or over other data domains. If you
prefer, the Analyzer will produce tables that present the same
information in the form of actual data counts instead of scaled
histogram bars.

— Annotated source file listings. The Analyzer displays high-level
language program source code next to the requested performance
or coverage data on a line-by-line basis.

— Call trees. The Analyzer allows you to perform specific call stack
analysis, from which you can get a call tree plot, displaying the
dynamic call stack relationship of program units by name. This
permits you to pinpoint precisely the set of subroutine calls that
is consuming most of the time. This is useful for programs that
utilize commonly called, time-consuming subroutines.

— Lists hexadecimal dump of the contents of a file.

Additional PCA features include the following:

• Traversing. Once the Analyzer has tabulated the performance and
coverage data by means of histograms or tables, PCA allows you to
move through the data with the use of traverse commands. Using
traverse commands, you can sift through your performance data,
directing the Analyzer from one performance "hotspot" to the next.

• Screen mode. If you are viewing your performance data on a video
terminal, the Analyzer allows you to display different types of data in
separate windows.

• Multiple data kinds. The Analyzer allows you to display different
categories of performance data in the same histogram or table. For
example, you can display PC sampling data, page fault addresses, and
I/O service calls in the histogram. This allows you to correlate each
bottleneck with its cause (for example, I/O service call, page fault,
CPU consumption, and so on).

2-14 VAXset Tools

• Acceptable Non-Coverage. If you have portions of code that you do
not expect to be tested—for example, internal error paths or difficult-
to-test sections—you can indicate to the Analyzer that those portions
are acceptably non-covered. On iterative test runs of your code, the
Analyzer keeps track of those portions so you can ignore them in
future coverage analysis.

• Filtering. The Analyzer allows you to filter performance or coverage
data before it creates histograms or tables. This feature is useful
when you want only a certain subset of that data to be analyzed; for
example, data associated with a particular event.

PCA Integration

Used with DTM, PCA can evaluate code coverage of your test system.
Additionally, you can use the regression tests as performance tests for

PCA.

You can also use PCA to analyze programs that are composed of modules
written in different languages. Additionally, from PCA you can invoke
LSE and have access to all LSE's features, such as links to SCA and CMS.

2.2 Additional VMS Tools and Utilities

In addition to the VAXset tools, the VMS environment and other lay¬
ered products are also important components of an integrated software
development environment. Of particular use to developers is the VMS
Debugger. This is an interactive, symbolic program debugger that sup¬
ports the family of VAX languages. Because you can invoke LSE from
the debugger, any errors you detect during a debugging session can be
corrected in the original source code file without leaving the debugger.
When you invoke LSE from the debugger, you are positioned in LSE at
the line of source code that corresponds to your position in the debug¬
ging session. From here, you can make edits, use SCA, or reserve files
from CMS. When you finish correcting the error, LSE returns you to the
debugger at the position where you left off.

The VMS Mail Utility (MAIL) enhances communication within your de¬
velopment group and between your group and other groups by providing
a means to send mail electronically. This feature of the VMS environment
should be part of any development team's effort to maximize the quality
and timeliness of their project.

VAXset Tools 2-15

Related Software

Related software includes optional capabilities for information manage¬
ment, data communications and networking, program migration, cross
development, and many other capabilities. Programmers can incorpo¬
rate features of related software products into their application programs.
Descriptions of some of these products follow:

The VAX Common Data Dictionary (CDD): The VAX Common Data
Dictionary (CDD) can act as the central repository for data descriptions
and definitions used by various VAX languages (including fourth gener¬
ation languages), databases, and tools. The CDD provides the following
benefits to a project:

• Storing data definitions within the CDD eliminates the need to define
data within application modules. This applies to application modules
written in VAX BASIC, VAX C, VAX COBOL, VAX DIBOL, VAX
FORTRAN, VAX Pascal, VAX PL/I, and VAX RPG II.

• Storing data definitions in a central area reduces redundancy (multiple
copies of the same data definitions) and inconsistency. To change a
data definition that affects several application modules, you need to
make the change only once, in the CDD, then recompile the affected
modules.

• Multiple modules, although written in different languages, can share
one or more definitions stored in the CDD.

• Using the VAX CDD history list feature, you can keep a record of each
access to a VAX CDD directory or dictionary object.

• The VMS Lock Manager facility lets users access the VAX CDD
concurrently without interfering with one another.

The CDD provides an efficient way to help manage and control definitions
across the modules that make up an application. By planning for its use
early in a project, a team can simplify its management tasks.

VAX DATATRIEVE: VAX DATATRIEVE is a tool for managing and
manipulating data either interactively at a terminal or from an applications
program. With a set of English-like commands and statements, you can
interactively retrieve, store, modify, and report on data in meaningful
ways. For applications programmers, VAX DATATRIEVE can save
coding/debugging time and source space by handling the following
functions:

• Finding and opening data flies

• Performing input and output operations

2-16 VAXset Tools

• Formatting data

• Converting data types

• Handling error and end-of-file conditions

VAX SCAN: VAX SCAN, a string manipulation language, uses macros
to generate the desired output text stream from an input stream of text.
For example, you can use SCAN to create a filter to run with DEC/Test
Manager. To avoid trivial conflicts between a test's output and its bench¬
mark, SCAN can globally modify a text string (for example, a time output)
to have the same output in both the test and its benchmark. SCAN is
especially useful for building tools such as preprocessors, translators, and
parsers.

VAX NOTES: VAX Notes is a computer conferencing system that
lets you conduct online conferences or meetings. Using VAX Notes,
you can communicate conveniently and economically with people in
different geographic locations. A development team can take advantage
of VAX Notes to discuss and exchange information on product design and
development issues, particularly with people geographically separated
from the immediate team.

VAX SOFTWARE PROJECT MANAGER: The VAX Software Project
Manager (PM) is a tool that automates project management activities
throughout the software development life cycle. You can use PM to plan,
control, and estimate software projects. Using PM, you can record and
modify project information, track project costs and resources, and produce
project schedules, charts, and reports quickly.

VAX DOCUMENT: VAX DOCUMENT is a system for producing
technical documentation and is designed to fully automate the creation
of typeset-quality documentation from generically coded input files. VAX
DOCUMENT is an integrated series of software processors that convert
generically coded, device-independent source files into formatted output.
Using VAX DOCUMENT, a project team can write and maintain files for
a document, produce typeset-quality output for a wide range of output
devices, and correct errors and incorporate changes into source files using
a common text editor. VAX DOCUMENT supports a wide variety of
document types, ranging from interoffice memos to software reference
manuals, which ensure consistency in format, typeset design, and basic
organization. VAX DOCUMENT also provides a document type that
meets the federal government's requirements for DOD-STD-2167 and
templates for each of the DIDS Data Item Descriptors specified in that
standard.

VAXset Tools 2-17

In summary, the VMS software environment provides powerful tools to
aid in developing your applications. In order to use the tools effectively,
you need to structure your project to maximize your output from these
tools.

18 VAXset Tools

Chapter 3

Setting Up a Software Project

This chapter suggests ways to set up a software development project,
and discusses the reasons for adopting a particular software development
methodology. The chapter also discusses some of the tasks the project
leader or supervisor should consider when beginning a software project,
along with some options that are part of these tasks.

The goal of the chapter is to provide a framework on which to build your
software development project, not to provide rigid guidelines for software
development.

3.1 Initial Procedures for a Project Leader

The following sections explain the initial procedures a project leader or
supervisor should follow to develop a software application. These include
the following:

• Organizing a project directory structure and initial libraries to store
key elements and build areas for the project.

• Establishing a proper protection scheme for all the project's directories
and files.

• Setting up a procedure to meet build requirements.

• Implementing templates, standards, and logical names.

• Establishing a mechanism for documentation reviews.

• Establishing a mechanism for internal and external communication.

• Establishing a test system and a test storage area.

Setting Up a Software Project 3-1

3.1.1 User Accounts and Directory Protection

A project leader must first determine what project information and re¬
sources team members need. Based on this, the project leader sets up user
accounts and protection for these accounts.

VMS provides several tools to authorize and control the use of system
resources by individual users. The VAX/VMS System Manager's Handbook
describes these tools and discusses how and when to use them. The
VMS DCL Concepts Manual gives a detailed explanation of protection
procedures, User Identification Codes (UICs), and Access Control Lists
(ACLs).

The first steps in resource planning should provide a basis for system
accounting, file protection, and interprocess communication. You can do
this as follows:

1. To protect your data, establish a group of user accounts by specifying
a common UIC group number for all project members; or set up rights
identifiers to provide varied and selective access, if necessary.

2. Create a list of rights identifiers for the members of your project team
and enter those identifiers in the system rights list. For example, you
may wish to make developers holders of the PROJECT-SOURCE
identifier, and make technical writers holders of the PROJECT-
SOURCE—READ identifier. Examples of using these rights identifiers
are described in Section 4.1.2.2.

3. Set up UIC protection masks (use the DCL command SET
PROTECTION) to further restrict outside access (system, owner,
group, world) to member directories, certain project and library di¬
rectories, and selected files. Additionally, you may want to define
categories of access within the group (read, write, execute, delete).

4. Use Access Control Lists (ACLs) to restrict access to specific elements,
by defining protection rules (UIC or identifier-based protection masks)
for a file or a directory. By using ACLs, you can provide, as necessary,
access to specific elements for users having other UIC numbers.

See Chapter 4 for an example of setting up protection for directories and
libraries.

3-2 Setting Up a Software Project

3.1.2 Project Directory Structure and CMS Libraries

In planning a CMS project library, you need to consider the following:

• How much disk space do you have?

• What project tasks require a CMS library?

• Will the library be used mainly for static storage or more for dynamic
storage; that is, tracking files that change frequently?

• Is it possible to predict size requirements for each library in the
system?

• Do you need a librarian to manage the library?

• What access rights do you need, if any, and for which files or libraries?

• How often will you build your application?

• What will the naming conventions be for CMS library elements,
groups, and classes?

• What, if any, will be the protocols to use the system?

Directories and libraries should be set up to optimize their use by both
the team members and the tools. Figure 3-1 shows the first stages of an
effective directory structure. It contains the directories and libraries that
you will set up in the early stages of your project. You will add more
directories and libraries to this hierarchy as your project develops, as
discussed in later sections of this chapter.

The first storage areas you need include the following:

• A subdirectory for public access

This subdirectory, [PROJ.PUBLIC], contains information for users
and interested parties (for example, printable documentation files).
(Alternatively, this directory could be kept outside the project area.)

• A subdirectory for global command procedures

This subdirectory, [PROJ.COMS], can include command files that
contain logical name definitions and files with command procedures
developed during your project cycle.

• A CMS library for source code

Setting Up a Software Project 3-3

Figure 3-1: Initial Storage Areas for a Typical Project

This library, [PROJ.CODE_CMSLIB], contains your source files. It
is most useful for dynamic storage; that is, storage of objects that
frequently change. The code library can include program module
source files (.BAS, .PAS, .FOR, and others) and precompiler source

files (.RCO, .RBA, and others).1

Initially, the CMS code library can store your team's prototype
sources. This library is also a good location for the MMS descrip¬
tion file, which details and invokes your build procedures. CMS stores
the various versions of this file as your team periodically updates it.
You can also store link option files here, to be fetched by MMS for
link procedures.

• A CMS library for documentation

The CMS library for documentation, [PROJ.DOC—CMSLIB], can
contain files that document the application; for example, those pro¬
duced for DIGITAL Standard Runoff (DSR) (.RNO files) or VAX
DOCUMENT (.SDML files). You can keep the most recent printable
files (.MEM or .LN03 files, for example) in the publicly accessible
subdirectory, [PROJ.PUBLIC], or in your CMS library. But generally,
you should not store files that can easily be reproduced by processing
already stored files if disk space is a concern. Alternatively, you may
want to store your document sources in more than one CMS library;

1 Precompiler source files are for the RDBPRE precompiler, for example, before precompiling.

3-4 Setting Up a Software Project

for example, using one CMS library for requirements documentation
and another CMS library for specifications documentation.

Another alternative to setting up separate CMS libraries for the
documentation sources would be to place them in the CMS code
library. This way, you could fetch or reserve both the documentation
and the source files with one generic file designation. For example:

$ CMS FETCH proj.file.*

This command retrieves files related by name but with different
functions and different file types; for example, source code versus
documentation source. Chapter 4 provides an example of setting up
CMS libraries. See the Guide to VAX DEC/Code Management System
for detailed explanations of CMS libraries and commands.

Considerations for Large Projects

For large projects, you may need additional CMS libraries for your
source code. Typically, as the size of a library increases, so does the
number of users attempting to gain access to it. Although CMS does
not have a restriction on the number of elements you can have in
a library, the probability that a library will be busy increases as the
number of elements and users increases. The problems of having a
large library with numerous users include the following:

• Access. CMS allows multiple simultaneous readers; that is, users
of the library for tasks that do not modify the contents of the
library (for example, SHOW and FETCH operations). However,
CMS provides only single thread entry; that is, only one "door"
for operations that modify the library's contents (for example,
RESERVE, REPLACE, INSERT operations).

The many developers involved with a large project are likely to
interfere with one another if they attempt frequent library opera¬
tions that change the library's contents. This type of bottleneck is
particularly noticeable during major batch operations that change
the contents of the library. Users can reduce problems during
these operations by adjusting their work habits; for example, they
should avoid wild card operations during busy periods, or use
only FETCH operations during build procedures.

• Redundancy. Large applications do not necessarily have their
functional development occurring in parallel. Some pieces of func¬
tionality are complete early in the project life cycle, and remain
relatively stable. To some extent, build procedures repetitively
access these stable modules, if only to check their update status.

Setting Up a Software Project 3-5

To avoid this problem, design your build procedure to be modular.
Rather than rebuilding stable targets, set up your build proce¬
dure to group stable components and unstable components into
separate targets. Then simply build only the unstable targets.

Multiple CMS libraries keyed to each logical or functional subsection
(or facility) of the application help to avoid the performance problems
of many elements. However, multiple CMS libraries do create prob¬
lems of their own. For example, CMS does not have a cross-library
referencing feature. This means that CMS features such as groups and
classes no longer easily encompass the entire application.

To offset this difficulty, you can use the Search List facility of CMS
to help with managing multiple libraries. As you subdivide libraries
to improve performance, though, there will be a tradeoff between
performance and ease of library management.

For operations that are common and need to be faster than is possible
with a command procedure, you may want to write programs that use
callable CMS to perform the operations. Refer to the VAX DEC/
Code Management System Callable Routines Reference Manual for more
information.

The directory structure for a large project can still be based on
Figure 3-1. However, each facility of the application will have its
own [PROJ] area as part of the structure. In effect, each facility of the
project would function as its own "miniproject." The entire application
will come together at major application milestones or base levels that
represent agreed-upon stages of progress.

3.1.3 Build Directories

Although CMS can store nontext files, such as binary sources, you may
choose to refrain from storing files that can be produced from other stored
files (for example, object files that can be produced from source files). This
saves disk space. You can set the build areas up as parallel subdirectories,
which will correspond to the initial prototype build directory. Figure 3-2
shows the hierarchy that would result from this type of build structure.

3-6 Setting Up a Software Project

Figure 3-2: Build Directory Hierarchy

Located on your group's disk are directories devoted to the periodic
building of your application: GROUP:[PROJ.BLD_Vn], where n represents
the version number of the software. As your project develops, you
can create subdirectories to store successive versions: [PROJ.BLD-Vl],
[PROJ.BLD—V2], and so on.

You can use a directory [PROJ.BLD_Vl.WORK] to carry out your project
builds. Essentially, this directory [PROJ.BLD_Vl.WORK] can store all
the files that you do not want to store in a CMS library, but that you
will reconstruct with each major version of the project. As a result of the
builds, this directory will store the source files fetched from CMS, and
the .EXE, .OBJ, and .ANA files that are produced during compilation and

linking.

You may want to group all the .OBJ files into a object library (.OLB) in
order to simplify your linking procedures. You can link against the object
library rather than all the individual object files. See the VMS Librarian
Utility Manual and the VMS Linker Utility Manual for more information
about VMS object libraries and how the linker uses libraries.

Setting Up a Software Project 3-7

You need to determine how often you want to make major builds, and
which builds you want to keep. You can establish procedures whereby
you rebuild or update only at predetermined times. Alternatively, you can
update the shared build directory using CMS sources as soon as all your
developers replace the necessary CMS elements.

The advantage to keeping your build versions intact is that it allows your
team easy access to the files as they existed when that build was carried
out. However, because of the disk space needed to store all the contents
of a build, you probably need to limit the number of build versions that
you actually keep.

You may find it advantageous to keep one major build that you frequently
return to, perhaps for support and maintenance purposes. Intermediate
builds do not have to be kept because of the class feature of CMS, which
allows you to freeze the sources for any build. By fetching the source files
in a given class, you can re-create a build from any development stage
using the original source files in CMS.

3.1.3.1 MMS Description File

MMS helps you with the building process by automatically accessing
the source files you store in a CMS library. It follows the sequence of
dependencies among your source files as described by you, includes all
the necessary modules in the build, and ensures that your build uses
the current sources. You can use MMS to build not only your code
applications, but your documents as well.

You describe the structure of your application to MMS in a description file.
Because you are likely to update it as your project evolves, the description
file should be stored in your CMS source library. It can be incorporated
into a CMS class as part of a snapshot of your files at each successive
base level. Whenever you need to rebuild a class, for instance, an older
base level, you have stored in that class the sources along with the MMS
description file to build the application.

Your use of MMS is likely to affect what you decide about your build
procedures and the frequency of your builds. MMS allows reliable incre¬
mental building; that is, builds that incorporate only the changes made
to modules since the last build. This kind of incremental building con¬
trasts with a build procedure that uses all the sources in the application.
Because of this feature, you may want to carry out nightly incremental
builds, while leaving builds that start from all your sources and regenerate
all intermediate files only for planned milestones during your project's
development. The advantage to building incrementally is that you avoid

3-8 Setting Up a Software Project

the additional time needed to build from all the sources when only a
relatively small percentage of code actually changed since the last build.

Chapter 4 contains an example of setting up an MMS description file.
See the Guide to VAX DEC/Module Management System for a complete
description of MMS.

Considerations for Large Projects

For large projects, the functionally-defined individual facilities or "minipro¬
jects" can build incrementally, as described previously in this section.
Coordinating full application builds involves several steps:

1. Determining stages of development (milestones or base levels) at
which updated facilities contribute their sources.

2. Creating classes within each facility that represent the current sources
for that facility.

3. Fetching from those classes to a storage area that has limited access
beyond a person assigned the role of configuration manager.

4. Using a master build procedure to assemble the sources into the
executable application itself.

The way a project implements these steps can vary depending on the
demands of the project. For instance, the configuration manager may layer
another CMS library on top of the facility libraries to monitor the fetched
classes. This library would not be an active development library, but a
storage facility with the added feature of detailed history for transactions.
New classes at future stages of development will be added to this library,
and the application builds will proceed from there.

3.1.3.2 Reference Copy Area

A reference copy area is a storage area that you create as a separate sub¬
directory (for example, [PROJ.BLD_Vl.CODE_REFCOPY] in Figure 3-2).
Using a reference copy area can provide an alternative way to carry out
your builds. Rather than having MMS fetch files directly from CMS, you
can have it access the files in a reference copy area and build up from all
the sources.

One advantage to building from a reference copy area is the increase in
speed during the initial part of any build procedures. You instruct CMS
to duplicate every updated source in the reference copy area. CMS then
functions as a reliable backup, with a detailed history of all transactions.
Note that a CMS library can only update one reference copy area at a
time. Should you want to keep more than one reference copy area intact

Setting Up a Software Project 3-9

as your project moves from version to version, you can either direct CMS
to use a new reference copy area or use multiple CMS libraries.

Whether or not you actually use the reference copy area for builds de¬
pends on the work procedures your project sets up. You also need clear
copies of your sources for the debugger, PCA, and for LSE when used
with SCA. However, these clear copy sources can be drawn from a project
work area as well as from the reference copy area.

The main disadvantage of doing builds from the reference copy area is
the lack of historical tracking. You can use the CMS VERIFY command
to check for discrepancies between elements in the CMS library and
corresponding files in the reference copy area, however. If you choose to
use a reference copy area for building, you should restrict access to this
directory so that people outside your group cannot copy your sources, and
members of your group can copy read-only versions of the files. Your
developers must reserve the files from CMS if they want to edit a file,
thereby generating a history of the file transaction.

Another disadvantage of building from the reference copy area is that you
cannot re-create earlier versions of your application: the reference copy
area maintains only the current versions of your sources. A final limitation
of this feature is that it works only with the main line of element descent
in the CMS library. In other words, you cannot use this feature for variant
source development. Despite the build limitations, the reference copy area
provides a useful intermediary between the CMS library and individual
work areas.

Advantages exist for carrying out build procedures that rely on the CMS
library rather than a reference copy area. MMS can automatically carry
out a build based on a comparison of sources in a local directory and
in the CMS library. This feature is particularly useful when a developer
wants to see the effect of modified modules on the entire application
before replacing the modules to the CMS library. In this case, MMS can
rebuild the application, carrying out the build with the new modules
only. This is the build procedure followed in the scenario described in
Chapter 4.

3-10 Setting Up a Software Project

3.1.4 SCA Libraries

You can make your project-wide SCA library a part of the build tree
hierarchy (for example, [PROJ.BLD-Vl.SCALIB] in Figure 3-2. To provide
an index of detailed source information for your project, you can arrange
your SCA library system to consist of the following:

• A comprehensive project-wide SCA library that reflects the develop¬
ment of the entire software application.

• Individual SCA libraries that correspond to local sources used by team
members during individual development tasks.

During the compilation stage, compilers produce .ANA files containing
modules of analysis data. These .ANA files need to be loaded into an SCA
library. SCA then accesses the library for this information when carrying
out any requested queries.

Figure 3-3 shows how to generate the analysis data from your source
files. In this case, a Pascal file, when compiled with the /ANALYSIS-
DATA qualifier, produces a corresponding .ANA file. Using the SCA
LOAD command, you can place the analysis data into the SCA library's

database.

Setting Up a Software Project 3-11

Figure 3-3: Filling an SCA Library

ZK-5942-HC

3.1.4.1 Project-Wide Development

By using the /SCA_LIBRARY qualifier on the MMS command line to
initiate a project-wide build procedure, you can have MMS automatically
compile your files with the /ANALYSIS-DATA qualifier and load the
.ANA files into the SCA project-wide library. This produces a project-wide
SCA library that reflects the latest developmental work as maintained bv
the CMS library. y

Section 4.8 contains an example of an MMS description file that shows
these steps done manually for purposes of illustrating them.

3.1.4.2 Incremental Development

Your team will benefit from an SCA library structure in which team mem¬
bers independently manage those libraries that are small and frequently
changing. This becomes even more important for extremely large projects;
consequently, individual developers benefit from updating only their local
SCA libraries on a regular basis, and not the project-wide SCA library. It
even may be to your advantage to create functionally distinct project-wide
libraries to speed access to these libraries.

3-12 Setting Up a Software Project

Developers can start each work day by reserving files from the CMS
library to their local work area where they can carry out ongoing devel¬
opment. After compiling the files, they can use their local SCA library to
store the newly created analysis data.

When actually using SCA to query the application, developers can take
advantage of SCA's ability to treat its multiple physical libraries as a
single virtual library (combination of physical libraries). This can be done
by using the SET LIBRARY command as follows:

$ SCA SET LIBRARY lib_l,lib_2

This sets up a library search list (similar to a VMS directory search list) for
SCA to follow. For instance, the first SCA library designated on the list
can be a developer's small local library. The last library on the list is likely
to be the project-wide SCA library. Note that more than two libraries can
be designated on the search list.

Every module of the first library in the search list is included for viewing
in the virtual library. Each module in each subsequent library on the list
is then compared with the modules previously selected. If a module is
uniquely named, it is included for viewing in the virtual library; otherwise,
it is excluded (since it has already been defined).

Figure 3-4 shows how a virtual library concatenates the physical libraries
on a library list. As a result of the previous SET LIBRARY command, a
developer creates a virtual library containing four modules: A and D from
Physical LIB_1 together with C and B from Physical LIB_2.

When making queries, you have access to the information in any of these
libraries. Since SCA looks into the libraries in the order specified in your
library list, you can efficiently access small portions of your application,
unless the sources' analysis data can be found only in the libraries further
down on the list. Note that when SCA joins the physical libraries into a
virtual library, only modules found in the first libraries will be accessed
by SCA even when they are also stored in libraries further down on the
library list. The modules down the list are hidden.

An added benefit of this procedure is that it prevents unintended changes
to the project-wide SCA library: any updates to the SCA library take
place only to the library on the list corresponding to the source modules
being updated. When a developer updates an SCA library with the LOAD
command, only that developer has access to the library until the load
process is finished. If many people were using the same library, and that

Setting Up a Software Project 3-13

Figure 3-4: Physical versus Virtual SCA Libraries

Virtual Library

/

/

/
/
/

/

/

Physical LIB_2

MODULE

A

HIDDEN,/
/

“7*-

Physical LIB_1

MODULE

A

/
/

/

/

/
/

MODULE

D

Module

c

-
Mj0f)ULE

B

MODULE

D

HIDDEN

/

/
/

/
/

ZK 5946 HC

library were subject to frequent updating, access would be restricted. In
general, loading is a slow procedure (comparable in time to a compilation)
and should be done in batch mode for a project-wide library. In contrast,
local library updating is quite manageable. Note that an SCA library
supports queries by multiple users.

3-14 Setting Up a Software Project

As team members complete particular programming tasks, they will need
to update the original source files and the project-wide SCA library. By
replacing elements in CMS, team members update the original sources.
The next run of the project-wide build procedure generates updated SCA
information in the form of .ANA files, which, in turn, can replace the
outdated source analysis data in the project-wide SCA library.

These procedures produce a project-wide library that reflects periodic
modifications. By using local libraries, programmers can efficiently use
SCA on immediate development tasks. Finally, when the team reaches
predefined milestones and begins a major application build, they can
re-create the entire project-wide library. In this way, the team can tie
current build sources and development status to specific milestones. In all
cases, the team can create or modify build procedures to automatically and
selectively update SCA libraries at appropriate times, for example, when
compiling local source files or during a major application build.

For more details on SCA, see the Guide to VAX Language-Sensitive Editor
and VAX Source Code Analyzer.

3.1.5 DTM Libraries

As part of your directory organization, you should set up DTM stor¬
age space. Setting up test directories early in your project provides the
following advantages:

• Your organizational directory structure is fairly complete and you can
easily add components as your project grows.

• Your programmers can begin writing tests early in the project life
cycle; this is particularly useful on large-scale projects.

• Your team can produce tests for undeveloped code; these tests will
make it less likely that some design functionality will be lost as the
project develops.

• Your developers have a mechanism for intermediate testing before the
code has reached refined development.

Setting Up a Software Project 3-15

Figure 3-5: Directory Structure Showing DTM Libraries

ZK-5943-HC

As shown in Figure 3-5, your DTM directory organization may require
three storage areas:

• A DTM library for test results

This library is a separate subdirectory (in Figure 3-5, designated as
[PROJ.DTMLIB]). This library stores DTM test description information.
This test information, located in a DTM database, provides DTM with
the following:

— The name of the test

— The name and location of the file that executes the test (template)

— The name and location of any procedure that runs before or after
the test (prologue and epilogue)

— The name and location of the file (benchmark) against which to
measure the test results

3-16 Setting Up a Software Project

— The values for any symbols or logical names that DTM is to set up
for each test or collection of tests while executing (DTM variables)

— Any associated filter procedures

The DTM library also stores the results of your tests; these results may
also include PCA test coverage or performance results if DTM is used
to control PCA data gathering. In this situation, since DTM controls
the data collecting, it automatically places the PCA results in the
DTM library. After you act upon DTM and PCA results, if problems
do occur, you can purge the result files as part of your ongoing
development process. Note that the collections shown in the DTM
library ([PROJ.DTMLIB]) in Figure 3-5 are generated automatically by
DTM.

Note that when you collect data using PCA by itself rather than
through DTM, the PCA data file can reside temporarily in your work
area or default directory. After analyzing the data collected by PCA,
you can discard this file.

A CMS library for DTM test files

You can store templates, benchmarks, test data files, prologue files,
and epilogue files in this library. (In Figure 3-5, it has the designation
[PROJ.DTM—CMSLIB].) As you complete your test cycles, you can
store validated test output as benchmarks for future tests. CMS
organizes and tracks these files, thereby ensuring the integrity of past
and future test performances.

As an alternative, you can create separate subdirectories for your
DTM test files rather than using a CMS library. You can even create
multiple subdirectories for this purpose corresponding to important
stages in the product's development. The advantage will be some gain
in speed; however, you will use more disk space and not have any of
the history tracking features of CMS.

A DTM subdirectory for test data

Whether or not you need this particular subdirectory depends on your
application. You may choose to use this directory to store input files
needed for generating output files for tests. For example, a linker
project may regularly, as part of its test procedure, read an .OBJ input
file to generate an .EXE output file. Although CMS can store these
non-ASCII files, you may find it an organizational aid to maintain this
subdirectory for testing purposes. In Figure 3-5, [PROJ.DTM—DATA]
stores these types of data files.

Setting Up a Software Project 3-17

3.1.6 Project Standards

Project procedures should include establishing standards for your team
to operate by, such as design standards, coding standards, and testing
standards. By agreeing on these standards early in the project's life
cycle and having all team members adhere to these standards, you avoid
confusion and conflict later. An added benefit is that standards provide a
consistent framework for new team members, enabling them to become
knowledgeable about the project faster.

Design Standards

Establishing design standards means agreeing upon, and adhering to, the
format of the application's designs. You need to decide on the content
of your designs. The designs should consider not only the specifics of
how you plan to implement functional areas, but also the context of your
application. Examples of additional considerations include evaluating
dependencies outside of the project, as well as within it, or deciding what
languages you will use to implement a particular functionality.

To aid in making development decisions in the future, you should record
not only design features you decide to keep, but also alternatives that you
discard. The goal is to have workable and complete designs; consistency
that your team agrees upon will make this more likely.

Coding Standards

You should set up coding standards in the early stages of your project.
For instance, you will find that consistent naming standards provide the
following advantages:

• Faster identification of code elements by developers

• Easier access to files, directories, and so on, by means of wild-card
characters

• Faster learning for new members of your team

• Faster work with the VMS Debugger

• Easier maintenance of software in the future

The following are examples of naming conventions for modules, routines,
and variables in an application. See the Guide to Creating VMS Modular
Procedures for more detailed information on coding standards.

3-18 Setting Up a Software Project

• Routines: PROJ_DB_CRE ATE-OBJECT

To make it easier to locate a set of related routines, group your
routines into facilities. Providing related routines with a common
facility prefix organizes the routines. The facility prefix is the first part
of any routine name. In this example, the PROJ_ is the facility prefix.
The remainder of the name indicates the type and function of this
routine. Other examples of functions might include GET, FIND, and
MODIFY.

• File name: PROJ—DB.PAS

This example uses the facility prefix, PROJ, and the DB designation
to show which type of routines are in this file (in this case, database,
routines).

• Modules: PROJ—DB

Module names are identical to file names except module names do not
have extensions.

• Variables:

- PROJ-GT-USERNAME

This example has the prefix PROJ_. The letters, GT, indicate that
this is a global text declaration, accessible to any module.

- PROJ_K_MAXFILE—COUNT

The K designates a constant, with the remainder of the name
describing the function, in this case, a value for the maximum
number of files to be used. Unlike the preceding example, this
is a local constant because it does not have a G for GLOBAL
immediately in front of the K.

A different example of coding standards is the use of coding formats. Built
into LSE's coding constructs is a consistent indenting format for each of
its supported languages. By using LSE in your project, you will ensure a
consistent format that makes your code much easier to read. LSE allows
you to customize your own language templates so that they adhere to
site-specific coding standards. This benefits not only your team during
development, but also new programmers who may maintain or update
your team's work in the future. See Chapter 4 for an example of using
LSE to help set up coding standards on your project.

When you set up coding standards, you may want to set up periodic code
review meetings. You can use these meetings to inspect sections of code to
see that it meets the team's standards, and that the code not only works,
but that it works efficiently.

Setting Up a Software Project 3-19

Testing Standards

By establishing goals for testing, you can create a testing plan that will
meet the particular needs of your project.

Realistic testing goals should include testing that starts early in the devel¬
opment process and runs through to the end of the life cycle. By testing
as your project grows, you are less likely to omit a particular piece of code
from testing as future work layers new functionality over it. Also, you
are more likely to discover errors while the code is still fresh in people's
minds; waiting to test could result in developers having to relearn code.

Your tests should cover every user feature that is part of your application,
along with all user error conditions. Additionally, you need to ensure that
all interactions between your application and other software applications
do in fact perform as described in your specifications. This type of testing,
one that tests against predicted external view, is referred to as "black
box" testing and can be applied more effectively in advanced stages of
development.

"White box," or unit testing, takes an internal approach to code testing.
By creating driver programs to exercise all the decision branches of a
piece of code, you can create tests that approach 100 percent coverage
of asynchronous applications. This type of more exhaustive testing, in
combination with "black box" testing, can meet the needs of those projects
that demand extensive testing.

A team involved with this type of rigorous testing can benefit from an
added feature of DTM: when used in combination with PC A, it can
produce an annotated listing of all code lines exercised by the test set.

Performance Standards

After writing a certain amount of code, programmers should be able to
run a simple set of tests to compare against performance benchmarks.
Although PCA does not have a facility for benchmarking, you can im¬
prove the overall performance of your software by using PCA to find
performance bottlenecks in the cases where you find poor performance.

3-20 Setting Up a Software Project

3.1.7 LSE Templates

You can use LSE templates to provide consistency in your coding and
commenting conventions. You can modify constructs, menus, and descrip¬
tions within existing definitions. If you need a language that LSE does
not support directly, you can create your own templates for that language.
See Section 4.3.1 for procedures to create templates.

You may want to create LSE templates for your documentation; for
instance, design or specification formats. These templates may be specific
to your project or tailored to the needs of your company or primary
customer. LSE allows you to customize the language templates provided
with the LSE kit. Each individual developer may make and save his
or her own modifications, if desired, as well. These templates can be
available to each developer individually, or you can have them become a
permanent part of the environment files provided with your system. In
the case of government contracts, document templates supplied with VAX
DOCUMENT can save considerable time while enforcing consistent and
complete documentation.

LSE also provides the CHECK LANGUAGE command to analyze the
definitions associated with a language. When you use this command on a
language, LSE reports on the following:

• Undefined tokens

• Undefined or unreferenced placeholders

• Placeholders defined with the same name as LSE package parameters

• Tokens defined with the same name as LSE package routines

• Routines or parameters defined with the same name in multiple
packages

• Invalid help topic strings

If LSE detects any of these conditions, they are reported in an editing
window, and can be sent to an output file. For more details, refer to the
Guide to VAX Language-Sensitive Editor and VAX Source Code Analyzer.

Setting Up a Software Project 3-21

3.1.8 LSE Logical Names

As part of the initial setup of your project, you will want to have the
context for the project implemented from a command file. You should
store the file itself in an area such as [PROJ.COMS] in Figure 3-6.

Your logical name definitions are included in this command file. These are
names you can use in place of a file specification, part of a file specifica¬
tion, or a directory. You can define names that your team uses frequently
in this common command procedure that can, in turn, be invoked by the
individual login procedures of your team members. Alternatively, you can
have these logicals defined in the system startup file with the /SYSTEM
qualifier so that they only need be defined once. See Section 4.3.2 for a
specific example of this procedure.

As yet another alternative, you can define your logical names in the group
logical name table. The group table contains logical names available to all
users with your UIC group number. See the VMS DCL Concepts Manual
for more information on logical name tables.

Figure 3-6: Initial Storage Areas for a Typical Project

3-22 Setting Up a Software Project

Logical names serve two main functions:

• You can define commonly used files, directories, and devices to have
short, meaningful logical names. Such names are easier to remember
and type than full specifications.

• Logical names safeguard the project against changes in the computing
environment. For example, if the project moves to a new disk, or
to another VMS system entirely, all you need to do is change the
definitions for the logical names. No changes need to be made to
the application itself. Using logical names can save many last-minute
changes when installing the application on the production system for
which it is designed.

Table 3-1 shows some examples of naming conventions for your
directories.

Table 3-1: Examples of Logical Names for Directories

Example Directory Purpose

PROJ-PUBLIC Public access area

PROJ_CMS_CODE CMS library for source code

PROJ-BLD Current version of the build area

PROJ—DTM DTM library

You can also use logical names to save time as your project evolves. You
are likely to create multiple versions of your build areas along with cor¬
responding build subdirectories. You can have your command procedure
update your logical name for the build subdirectory by redefining it to the
most recent build version.

3.1.9 Communication Management and Report Mechanisms

You want to ensure that people within your group can communicate
easily and effectively with one another, as well as with people outside
of your working group. You also want to keep records of much of your
communication. DIGITAL provides the VMS Mail Utility (MAIL) and VAX
Notes to aid in communication and record keeping.

Setting Up a Software Project 3-23

The VAX Software Project Manager (PM) is designed to handle tasks
associated with scheduling and individual status updating as well, and is
thus an important communications tool. Section 3.2.6 has more details on
using PM.

3.1.9.1 Communication Within Your Project

Every team can benefit from project reviews and meetings. The frequency
of these meetings will depend on the size of your team and the proximity
of team members. The meetings can help each team member become
familiar with the work of the other members of the team. With newer
programmers, there is the added benefit of having more experienced
programmers give advice to help solve obstinate coding problems.

In addition to face-to-face contacts and telephone conversations, you
can use the VMS Mail Utility. By forwarding documents and memos to
everyone in the team, you enhance team awareness and cohesiveness.

You can create a mail subdirectory for your project to hold project-related
messages. In the directory hierarchy, this would be a subdirectory of your
top-level directory: [PROJ.MAIL].

Using MAIL, you can track the status of a project. Usually, team leaders
require monthly reports from the team members. With MAIL, these
reports can be consolidated and forwarded to managers who are tracking
the project's schedule.

The VAX Software Project Manager is ideally suited for reporting the
status of work items and generating written status and schedule reports,
as well as charting and analyzing the team's progress.

3.1.9.2 Communication Outside Your Project

If your project has many members or if the members are not in the same
location, you may want to use VAX Notes, a conferencing tool.

VAX Notes provides your team with another way of communicating,
particularly with those outside your project. Unlike MAIL, VAX Notes
allows many people to communicate information on the same topic.

A frequent goal of any project during development is to gain feedback
from its users. You can speed this process by using VAX Notes to create a
conference for your project that people outside of your group can access.
You can create multiple conferences with different titles, functions, and
with varying degrees of user access.

3-24 Setting Up a Software Project

VAX Notes conferences are open to a larger audience and promote com¬
munication to a larger group than MAIL. VAX Notes keeps a record of all
entries and replies. At a later date, some of this online information can be
extracted to document changes to the software as part of a quality review.
In this way, VAX Notes is a useful tool for providing traceability for group
decisions on project design, problem reporting and correcting, and so on.
Some ways to use VAX Notes conferences to facilitate your project's goals
include the following:

• A Problem Forum Conference

Users outside your group may list errors or problems that they have
found. Someone from your group who monitors the conference can
suggest remedies, or if necessary, make changes to the software.
Other users who read the conference can themselves suggest remedies
or contribute their own opinion about the problem.

• A Wish List Conference

This type of conference limits the entries to features that users would
like to have as part of the software's functionality.

• Restricted Conferences

You can set up a conference accessible to a limited group of users.
For instance, if your group is large or its members are not near one
another, you may create a private conference for your group only. The
conference can also be open to a limited number of people who are
not part of your group, yet have a particular interest or a supervisory
role in the project.

This type of conference can do more than distribute information or
solicit feedback; it can be used to speed your review procedures. For
instance, you can set up a private conference for requirements, another
for specifications. Your reviewers can read the information online and
respond within the framework of the conference. This reduces the
need for you to transfer a hard copy to the reviewers. In addition,
your group can extract comments from the conference and incorporate
these comments into documentation.

Your own group can combine your use of MAIL and VAX Notes with
traditional means of communication to create an effective and customized
communication environment.

Setting Up a Software Project 3-25

3.1.9.3 Documentation Reviews

Since accurate and timely user documentation is critical to a product's
success, the team must build in adequate review procedures. The form
these review procedures take depends upon your team's size. Smaller
teams can rely on informal means of review, although formal reviews still
play a role. Larger projects may need defined responsibilities and more
careful oversight.

All the members of your team should review the complete user documen¬
tation. This overall review can combine with having individual developers
responsible for specific sections of the documentation; this narrows their
focus.

Formal reviews can supplement the informal and ongoing review process.
The result will be documentation that is technically accurate and is ready
when the product is shipped to customers.

3.2 Ongoing Procedures for a Project Leader

In the early stages of your project, you implemented a number of impor¬
tant procedures that will aid you in effectively managing the project:

• Finalized design plans.

• Created project directory and library structures.

• Implemented design and code standards.

• Agreed on document templates.

• Wrote an MMS description file to carry out builds for your documen¬
tation and preliminary code.

• Set up communication paths and mechanisms.

• Set up a project management database for the project, using the VAX
Software Project Manager.

If you have adequately planned your project in the early stages, you will
find that your ongoing management decisions are easier. However, you
will likely need to reevaluate some of the procedures while adding new
procedures as your project creates additional demands on your team.

3-26 Setting Up a Software Project

3.2.1 Extending the Library Structure

As your project moves into the implementation stage, you may need to
reevaluate the status of your directory structure to see if you can improve
it. For instance, you may find that a single CMS code library is inadequate
for your needs. It is recommended that you start with one CMS library for
source code and break it up if you find that you have library contention
problems.

You may want to rearrange your directory structure to better reflect the
ongoing development needs of your project. You may find that by adding
new storage areas, you can better access specific groups of files. These
are decisions that each team makes based on its own particular needs and
methodology.

3.2.2 Establishing Project and Personal Build Procedures

Section 3.1.3 discussed some of the considerations for determining your
team's build procedures. You will need to finalize a number of decisions
before you begin to implement your code:

• Whether to use incremental builds or build from the sources; that is,
whether to use a reference copy area or allow MMS to fetch from
CMS directly.

• How often to make builds.

• How thoroughly you want to automate your build procedure.

3.2.2.1 Personal Build Procedures

Individual developers need to make decisions about their own storage
areas. These typically are less complicated than the overall project struc¬
ture. For instance, individual developers are not likely to need a personal
DTM library. Many developers rely on the project CMS libraries to pro¬
vide a storage area, although some developers set up a personal CMS
library to track and organize their own work. Developers have a private
work area and possibly a separate build area; they may also need a local
SCA library.

Setting Up a Software Project 3-27

You will want to establish procedures for how members of your team will
work on particular files. Your team members should follow these steps:

1. Identify a problem (for example, a routine that needs to be modified).

2. Use SCA and its project-wide library to locate the routine and source
file.

3. Use SCA commands to bring a read only file into an LSE buffer (from
the project work area or a reference copy area—both set to read-only
access).

4. Determine whether any changes need to be made in the file.

5. Use the LSE RESERVE command to reserve a generation of the
corresponding element from the CMS code library.

6. Use LSE to modify the file.

7. Compile the modified file using LSE's COMPILE/REVIEW command.

8. Link the image.

9. Carry out any test procedures using the debugger and DTM.

10. Replace the modified file into the CMS code library.

Note that if there are substantial changes to code or to routine railing

sequences, you might want to use LSE's COMPILE $/ANALYSIS-DATA
command instead of COMPILE/REVIEW.

3.2.2.2 Project Build Procedures

Different members of your team will make varying degrees of progress on
their work as they modify files. Since modified modules affect the work
of other team members, you benefit by keeping your entire application up
to date. Otherwise, you risk accumulating discrepancies between modified
files and outdated files.

You can automate the build process with MMS, along with automatically
running your DTM test system. By analyzing your tests with PC A,
you can have information supplied about how thoroughly your tests
exercise your application. You can also use your tests to analyze and
track performance problems in your application. By setting up a DTM
epilogue, you can have a full status report on the test collection forwarded
to everyone on the team. The idea is to automate repetitive tasks while
enhancing overall team communication. For examples of using these tools
together, see Chapter 4.

3-28 Setting Up a Software Project

3.2.2.3 Access to SCA Libraries

When individual developers work on a small number of modules, they
can work within a virtual library consisting of their local SCA library
and the project-wide library. The CREATE LIBRARY command creates
a local library specifically for the modules under development. These
modules are then loaded into the local SCA library ([USER.BASELEVEL —
1.LIB11 in Figure 3-7). The SET LIBRARY/AFTER command makes sure
that the existing project-wide SCA library ([PROJ.BLD—Vl.SCALIB] in
Figure 3-7) is placed after the local library on the library search list. Note
that all of these actions take place within the framework of the individual
developer's work area. The following example shows these commands:

$ SCA
SCA> CREATE LIBRARY DISKI:[USER.BASELEVEL_1.LIB1]
SCA> LOAD DISKI:[USER.BASELEVEL_1.SOURCE]MODULE.A.ANA,MODULE.G.ANA,MODULE.K.ANA
SCA> SET LIBRARY/AFTER DISKI:[PROJ.BLD_V1.SCALIB]

Figure 3-7 shows the relationship between the two physical libraries in

this example.

Figure 3-7: Working SCA Libraries for Developers

[USER.BASELEVEl—1 .LIB 1]

[PROJ. BLD V1. SCALIB]

module_a module_g
module_k

module_b module_h

module_c module_i

module_d module_j

module_e
module_f module_l

Project-wide Library

module_a
module_g
module_k

Local Library

Virtual Library

ZK-5935-HC

Setting Up a Software Project 3-29

3.2.2.4 Access to Source Files

LSE, SCA, and CMS together provide ways to manage access to files. The
goals are threefold:

• To easily display the source code corresponding to particular variables
and routines

• To readily access modifiable files when you are ready to make changes

• To prevent inadvertent changes to sources

CMS provides the best repository for your sources. All CMS transac¬
tions generate useful history information, as well as keeping the sources
themselves intact over their development life cycle.

LSE can help manage source code by being the medium through which
you access your storage areas, including your CMS library. LSE's file-
access commands let you create a search list of directories. Typically,
this search list might consist of, in this order, a local work area, a project
build area, and, optionally, a CMS library. The following commands
demonstrate how you may do this:

LSE> SET S0URCE_DIRECTORY [], proj_build, proj_cmslib
LSE> SET DIRECTORY/READ.ONLY proj_build

The first command designates the order in which you want LSE to look
for a source: your local directory first, the project build area second, and
the CMS library last. The second command ensures that any sources
drawn from the project build area will be read only. Section 4.3.2 shows
how to carry out a similar procedure using logicals in a LOGIN.COM file.
Figure 3-8 represents the directories that correspond to the search list.

Note that with Version 3.0 of CMS, CMS objects may have Access
Control Lists (ACLs) attached to them that should be taken into account
when reserving and replacing elements and executing the commands
themselves. Some project leaders may wish to use CMS ACLs to control
access to library elements rather than requiring the use of the LSE SET
DIRECTORY/READ_ONLY command. While the SET DIRECTORY
/READ-ONLY command provides a useful mechanism for preventing
the accidental modification of files in a directory or CMS library, this
command does not provide the level of protection that ACLs can. By
attaching VMS ACLs to directories and CMS ACLs to CMS libraries,
you can protect objects that should not be modified (except by selected
people). And last, ACLs give you an effective security mechanism that
you can enforce for all users.

3-30 Setting Up a Software Project

Figure 3-8: Source Code Management

ZK5938-HC

CMS allows team members to access a file concurrently. When team
members return the files, they can use CMS to merge the files, informing
the most recent worker of any conflicting code that needs to be resolved.

Team members should use the Remark feature of CMS each time they
do a transaction, which CMS logs in the CMS library. This feature lets
each CMS transaction be documented more fully as it occurs, providing
a history that gives the project leader a way to monitor not only ongoing
changes to files but also the progress of programmers' work. If problems
turn up later, the CMS history information lets the team know who made
changes, when, and why. By providing informational remarks, team
members can also speed future work on the application, particularly dur¬
ing the maintenance stage. This information can also contain information
on metrics, such as how many modules have been added or changed, how
often, and so on.

Setting Up a Software Project 3-31

3.2.3 Setting Up Tests

Testing should be an integral part of all your developers' work in the
design as well as the implementation stages of your project. During the
design stage, your development team should be designing tests and laying
out a testing strategy in the same way they are designing and laying down
a strategy for coding. As you move into the implementation stage and
begin writing code, your team should be writing tests in parallel with
writing code. Since code develops in an iterative fashion, programmers
need to be sure they run tests on all the versions of a file. Otherwise,
new code may introduce errors that are not picked up. In effect, the code
will have regressed. All the modified code should have tests stored in the
CMS project library for DTM. (See Section 3.1.5 for information about
DTM libraries.)

To maximize the benefits from your tests, you need to decide how your
team should organize its tests. DTM provides several features for this task;
however, the organization itself is left to the test users.

The first structure for organizing a test system is the test description. A
test description identifies a test to DTM. It consists of fields whose contents
point to files needed to run the test. The core of each test description is
the test template file. The test template file is a DCL command procedure
or a recorded DTM session file that exercises your software. Each test
must have a template file.

Prologues and epilogues are command files associated with a specified
test. Prologue files run before, and epilogue files after, the test template
file. You can use the prologue file to establish any special environment
the test requires. The epilogue file can, for example, be used to perform
clean-up operations or to filter the result file of run-dependent data.

A variable in DTM is either a DCL symbol or a logical name. DTM stores
variables and uses them when executing tests. You can use variables in
templates, prologues, and epilogues. Variables provide a convenient way
for you to tailor a single template, prologue, or epilogue file so that it can
be used with many tests. For example, by using a variable in place of a
particular test name in a template file, you can use that same template file
to run many tests. You must define variables to DTM in a separate step,
and also include them in each test description that uses them. Section 4.8
contains an example of using DTM variables.

3-32 Setting Up a Software Project

You can organize your test descriptions in the DTM library by placing
them in groups. For example, if you have several tests that share a similar
characteristic or function, such as testing a parser, you can create a group
called PARSER and place those test descriptions in the group. You can
group the test descriptions by developer, or you can group them by both
developer and function.

If you are doing incremental nightly builds, you may want to run a subset
of all the system's tests. This subset can, for example, consist of tests of
software that accesses system services like the VMS Run-Time Library.
Such software is often subject to numerous code modifications and bug
fixes. Running subsets can save considerable time during the building
and testing process. However, note that one of the purposes of regression
testing is to catch errors in seemingly unrelated areas that were introduced
by the changes. So if possible, you should run an entire test set, even for
nightly builds. The sooner you find a problem, the less expensive and
easier it will be to fix.

Another use of test groups may involve forwarding tests to a quality
review process in which a representative sample of tests rather than a full
test system is appropriate. Figure 3-9 shows the concept of grouping test
descriptions.

Setting Up a Software Project 3-33

Figure 3-9: Grouping Test Descriptions

ZK-5936-HC

Grouping test descriptions simplifies the process of creating test
collections—the mechanism by which you actually initiate the running
of tests. The key is to create valuable test description subsets as groups
to encourage your programmers to use the tests. If you automate the test
process, you can be sure that all new code has been adequately tested.
Section 4.8 explains how to use automated testing procedures.

3-34 Setting Up a Software Project

3.2.4 Analyzing Performance and Coverage

As your project moves into advanced stages of development, you need to
check that your application and its component parts perform efficiently.
PCA can identify those parts of your application that use excessive
processing time.

Performance problems are a frequent complaint. Tight deadlines can cause
performance problems because software is released soon after
coding is completed. The result is that teams find themselves evaluat¬
ing performance intuitively rather than relying on quantitative data, and
programmer intuition can often be wrong. Although PCA cannot solve
problems associated with poorly designed software, PCA can help you im¬
prove performance by pinpointing performance bottlenecks, and indicate
when you have reached an optimum for the current design.

You can use PCA to analyze the coverage of your tests, ensuring that your
application has been thoroughly tested. PCA also lets you exclude certain
portions of your code from testing (if those portions are difficult to test or
are for internal error tracking) by allowing you to specify those portions
as acceptably non-covered. PCA keeps track of those portions from test to
test, and can automatically note if there have been any changes in those
portions between iterations.

3.2.5 Monitoring Project Progress

Producing quality software requires that a project be carefully monitored
throughout its life cycle. In order to carry out this task effectively, the
project leader needs a development plan with realistic estimates of how
long major milestones will take to implement. Project leaders need to
track the progress of their teams to be sure that individual members of the
team are maintaining their respective schedules. In turn, the project leader
will report the team's progress to those supervisors responsible for fitting
the project into overall company schedules.

Much of the work of monitoring a project depends on effective communi¬
cation. Some of the tools and techniques that can help in this task have
already been mentioned in previous sections:

• A realistic development plan available to the entire team and
management

• Frequent team meetings

Setting Up a Software Project 3-35

• Weekly or monthly reports by individual programmers and a collective
project report for management

• History logging from CMS and DTM maintained in their respective
libraries

The history logging from CMS and DTM is particularly useful for project
leaders. For instance, changes made to elements in CMS are automat¬
ically documented, including the person making the change, the action
taken, and the date of the transaction. Also, the report features of DTM
(by means of an epilogue file) provide teams with additional means of
monitoring a project.

3.2.6 Using the VAX Software Project Manager

If you have the VAX Software Project Manager (PM) present on your
system, you will find it an especially useful tool for monitoring project
process and for project management in general. PM is a package of tools
that automate project management activities throughout the software
development life cycle. You can use PM to plan, control, and estimate
software projects. Using PM, you can record and modify project infor¬
mation, track project costs and resources, and produce project schedules,
charts, and reports quickly. The PM tools are summarized in the following
list:

Planning Tools: PM provides the following tools to plan your projects:

• Resource tool for establishing resources for your project, such as staff,
equipment, supplies, and other elements needed to complete your
project.

• Work Breakdown Structure (WBS) Composer and Scheduler for
dividing the project into tasks and subtasks, and specifying the order
and dependency of tasks and milestones. You can use the WBS
Composer to create tasks and arrange them into a model of your
software development project. This model, called a Work Breakdown
Structure (WBS), is a tree structure composed of project tasks. Tasks at
the highest level of the tree, called parent or interior tasks, represent
organizational divisions of your project. Tasks at the lowest level,
called child or leaf tasks, represent the actual project work activities.

3-36 Setting Up a Software Project

You can create tasks and milestones with the Scheduler. These
activities appear on the Scheduler screen. You can connect these
activities to form a Precedence Network, which is a chronological map
of your project, showing the order in which tasks must be completed.
The Precedence Network begins and ends with milestones that may
contain additional milestones that mark important events in your
project, such as the end of a design stage. This Precedence Network
must be in place before you create your project schedule.

• Calendar and Scheduler tools for automatically calculating a Project
Schedule.

Controlling Tools: PM provides the following tools to report status and
monitor projects:

• Scheduling tools to generate new schedules based on your current
progress and to compare the results to a previous schedule.

• Status Updating tool to report effort and cost information for tasks
between the dates work has begun and when it is completed. This
information becomes the basis of the charts and reports PM produces
to help you monitor your project.

• Gantt Chart for monitoring the progress of work on a task-by-task
basis and seeing the amount of work remaining. The Gantt Chart
shows schedule and status information for all project tasks.

• Rate Charts for identifying schedule and estimation errors, allowing
you to compare actual against scheduled effort and costs.

• Reports tool for generating textual reports of work progress and costs.
The Reports tool provides summary project schedule, precedence,
and cost information for single tasks, or for all the project tasks and
milestones. The reports produced help you monitor the status of parts
of your project and of the project as a whole.

Estimating Models: PM provides the Estimator to make estimates of
project effort and costs, building a model called an Estimation Hierarchy,
based on Barry Boehm's COCOMO (Cost and Constructive Modeling)
model. The Estimation Hierarchy is a tree structure, consisting of nodes
that represent the deliverable components of the software system. The
Estimator uses the information you supply to predict how much effort
will be required to complete the project. After performing an estimation
operation, each estimation node contains cost and effort estimates for your
project. Information is rolled up, with interior nodes showing total cost
and effort estimates for its subordinate nodes.

See the Guide to VAX Software Project Manager for more details on using
PM.

Setting Up a Software Project 3-37

3.2.7 Tracking Reports During Field Testing

Progress can be hampered by poor tracking as a project moves into its
field test stages. At this point, the team needs an effective means of
getting and tracking feedback from its test sites. A team can use one or
more of the following techniques to ensure that it quickly receives and
responds to information from its test sites.

• Surveys

• Telephone contacts

• A system to report, assign, and track problems (Quality Assurance
Report (QAR) system)

A QAR system helps track feedback from field test sites. It is a means to
organize the feedback from the test sites and your team's responses to that
feedback. The following information describes how to use VAX Notes to
set up a functional QAR system.

Using VAX Notes

The built-in features of VAX Notes allow you to create a basic QAR system
to suit the needs of many projects. For detailed information on using VAX
Notes, refer to the Guide to VAX Notes.

You can use VAX Notes to organize feedback from the test sites. How you
get that feedback from the test sites, and return your responses, depends
on procedures set up at your work site. These feedback mechanisms
may be written comment cards. In this case, members of the team will
enter the comments into the QAR system. They will also enter into the
QAR system their response to the test site comment, as well as additional
information for the team itself, for example, the status of the response, or
any changes made to eliminate program errors. Finally, the response will
be sent to the test site by mail.

As an alternative to written comment cards, users can dial in to accessible
accounts to directly input their comments to the QAR system. In this case,
your team's responses would be entered directly into the QAR system.
This method would require users to refer back to the online QAR system
for a response to their comment. By having an online QAR system, an
added benefit is that test site users can look in the QAR database for
solutions to their problems and avoid entering duplicate problem reports.

3-38 Setting Up a Software Project

VAX Notes organizes and speeds up the entire process. The QAR system
relies on the ability of VAX Notes to organize input and replies. Further,
it takes advantage of keywords, a feature of VAX Notes that allows you
to group notes that concern a particular subject or do not have other
attributes (such as title, author, or time of entry) in common. In this
respect, it functions in a similar way to CMS groups.

A manageable QAR system using VAX Notes will have the following basic
characteristics:

• A conference that is devoted to problems, comments, suggestions, and
so on.

• Restricted access (optional) to the conference to team members and
possibly field test users by means of a membership list (built-in feature
of VAX Notes).

• Team members with CREATE —KEYWORDS or moderator privileges
along with responsibilities for responding to specific field test queries.
A moderator has certain privileges not available to other users.

• A team member assigned to the role of QAR system monitor (weekly,
monthly, or permanently), whose tasks may include collecting re¬
sponses from field test sites and adding them as topics in the con¬
ference. This person must also add appropriate keywords to the
notes.

When setting up the conference, you can use the first two topics to explain
the purpose and format of the notes. You can supply a template file in the
second introductory note that users can extract and then use, ensuring that
necessary information is supplied in a consistent format.

The topic note contains the text of the problem report. For easy cross-
referencing, the note can be titled as follows:

{PROBLEM SUMMARY}

For example.

Generates Bad DEBUG SYMBOL TABLE Records

The person acting as system monitor sends the problem report to the
maintainer assigned the task of responding to the report. The response
will take the form of a standard VAX Notes reply. This reply will then be
sent to the field test user, or, if the user has access to the QAR conference,
the user will be able to read the reply directly.

Setting Up a Software Project 3-39

The keyword feature permits the maintainers of the QAR system to
quickly access relevant notes. Keywords are first created for a conference
by anyone with moderator privileges using the VAX Notes CREATE
KEYWORD command. As stated previously, the person acting as system
monitor adds the appropriate keywords (using the ADD KEYWORD
command) to the notes. Once added, maintainers can retrieve all the
notes to which a particular keyword has been added by using the VAX
Notes commands: DIRECTORY/KEYWORD, SAVE/KEYWORD, or
PRINT/KEYWORD. The following example results in a listing of those
notes to which the keyword JONES (one of the maintainers) was added.

Notes> DIR /KEYW0RD=JONES

Table 3-2 shows some categories and examples of potential keywords.
Your project can use this feature to tailor its own cross-referencing
system.

Table 3-2: Keywords for a Sample QAR System

Category Keyword

Status Open
Closed
Answered

Answer Type Fault
Documentation
Suggestion
User_error

Maintainer Jones
Lewis
Peters

Version VI.0 (Released version)
Tl.l (Field test version)

Component Callable
Database
User_interface

These keyword examples show that the organizational framework is easily
tailored to specific project needs. By using the built-in features of VAX
Notes, along with structured response procedures by the team, an effective
QAR system can be established.

3-40 Setting Up a Software Project

Using VAX DATATRIEVE

An alternative to using VAX Notes for a QAR system is to use VAX
DATATRIEVE, VAX Forms Management System (FMS), and command
procedures.

Benefits of VAX DATATRIEVE include the following:

• An English-like query language that allows easy access to data stored
in VAX Rdb/VMS (Relational Database Management System), VAX
DBMS (Database Management System), and VAX RMS files.

• An Application Development Tool that provides a simple, inter¬
active means of defining record formats, VAX RMS files, and VAX
DATATRIEVE procedures.

• A Report Writer that allows you to create formatted reports on any
selection of data.

• A text editor (callable EDT) for easily changing record definitions or
correcting syntax errors.

• Support for the forms management facilities of VAX FMS and VAX
Terminal Data Management System (TDMS), which allow you to
format the screen for data display or collection purposes.

3.2.8 Final Steps in a Project

The final steps in a project are most likely not the end of work on the
software application. Maintenance may be an integral part of the appli¬
cation; in addition, future releases may follow. The procedures described
in the software methodology should help people in the future to effec¬
tively maintain the software. The last few steps of a product release will
contribute to this same goal.

Prepare Final Build

The procedure for the final build is really no different than those for
earlier builds that marked major milestones in the product's life cycle.
After completing the build, the sources, both code and documentation,
should be frozen using the class feature of CMS. Included with this class
should be the MMS description file that builds this version of the software.

Setting Up a Software Project 3-41

To make it easier to rebuild the final version, a master summary file can
store pertinent build information in the same CMS library. Use this library
to provide information that will ease the work for those who follow. For

example:

• Names of related classes in different CMS libraries

• List of product dependencies—which versions of related software were
used to build this application

The amount of information you keep depends on how much disk space
you have. For instance, keeping your DTM tests and results will certainly
benefit the people who maintain or upgrade the project. SCA library
information is useful, but can be rebuilt if necessary from the sources in
CMS during compilation.

Permanent Storage

The sources for the code and documentation, along with any other infor¬
mation (for example, online HELP files), should be permanently stored in
such a way as to prevent loss of the master files.

3-42 Setting Up a Software Project

Chapter 4

Using Tools on a Software Project

This chapter describes how to use the VAXset tools in a coordinated fash¬
ion as they might be used on a hypothetical project. The examples used
in this chapter are based on the so-called Transliteration project, and this
chapter shows how an imaginary project team—the Transliteration project
team—organizes its code libraries and builds and tests the transliteration
software, using the VAXset tools, the VMS debugger, a VAX processor
running the VMS operating system, and multiple VAX languages. The
goal of these examples is to present techniques that will help you make
the best use of the VAXset tools.

Although most of the examples relate to a single application being devel¬
oped by a relatively small team to support a larger project, many examples
are broadly applicable to the problems associated with larger projects.

4.1 Setting Up Directories

The Transliteration application manipulates and substitutes text strings
within a file. The project team, referred to throughout this book as the
Transliteration project team, will produce documentation for the designs,
specifications, and the application itself. The application requires several
source code modules to be built periodically. To ensure that these tasks
will proceed efficiently, the team has planned a directory structure to
support the tools and the project's storage and communication needs,
shown in the following section.

Using Tools on a Software Project 4-1

4.1.1 Directory Structure

A project's directory structure should reflect the specific needs of the
project along with the needs of the VAXset tools themselves. The project
should also have a directory structure that organizes and eases access to
the files of the application for those within the project. It is a good idea
to provide public directories to allow those outside of the project to have
access to nonrestricted files. It is also a good idea to create and maintain
build directories for both the project and individual developers.

Table 4-1 shows the directories and libraries created by the transliteration
project team. (Note that the table lists local directories for only one
developer; in reality, there would be local directories for each team
member.) The directory structure provides adequate storage for all the
required libraries. It also organizes the project's files into functional units.
A build area also stores the end products of any build procedures.

Table 4-1: Project's Directories
Directory Logical Name Function
General Directories

[TRN.PUBLIC] TRN-PUBLIC Stores information for public

users, for example, printable
documentation.

[TRN.COMS] TRN—COMS Stores project command
procedures.

[TRN.DOC_CMSLIB] TRN—CMS—DOC Stores documentation
sources.

[TRN.CODE_CMSLIB] TRN—CMS—CODE Stores source files.

[TRN.DTM_DATA_CMSLIB] TRN _DTM-DATA-CMS Stores input files necessary

to generate output files for
tests.

4-2 Using Tools on a Software Project

Table 4-1 (Cont.): Project's Directories
Directory Logical Name Function

DTM Directories

[TRN.DTMLIB] TRN—DTM Stores test descriptions
and results, including PCA
results.

[TRN.DTM—CMSLIB] TRN —CMS—DTM Stores templates, bench¬
marks, test data files,
prologue, and epilogue
files.

[TRN.DTM—DATA] TRN—DTM—DATA Serves as a directory for files
and test data not stored in a
CMS library.

Build Tree

[TRN.BLD—Vl] undefined Root directory for Version 1
build subdirectories.

[TRN.BLD_Vl.WORK] TRN—BLD Stores products of build:
source, .OBJ, and .EXE files.

[TRN.BLD—V1 .SCALIB] TRN _SCA Stores SCA modules for
project-wide access.

[TRN.BLD—VI.CODE—REFCOPY] TRN-REF Stores most recent clear
copy source files.

Local Directories

[JONES.WORK] MY-AREA Local area work directory.

[JONES.SCALIB] MY-SCALIB Stores local SCA analysis
data.

4.1.2 Creating Directories and Libraries

One of the first tasks involved in a project is to set up the directories
and corresponding libraries for the tools. The Transliteration team needs
libraries for CMS, SCA, and DTM.

Using Tools on a Software Project 4-3

Two steps are necessary to create a project library:

1. Create a directory for the library.

2. Create the library.

The Transliteration team implements protection through the DCL pro¬
cedures for directory protection. The following example shows how to
set up a CMS library for documentation while restricting access to the
library's directory:

$ CREATE/DIRECTORY/OWNER=[TRN.JONES]/PR0TECTI0N=(S:RWE,0:RWE,G:RWE.W:RE) -
_$ TRN_DISK:[TRN.DOC.CMSLIB]
$ CMS CREATE LIBRARY TRN.DISK:[TRN.DOC.CMSLIB]
.Remark: CMS Library for Project Translit documentation

Creating a CMS library for source code follows a similar procedure:

$ CREATE/DIRECTORY/OWNER=[TRN.JONES]/PR0TECTI0N=(S:RWE,0:RWE,G:RWE,W:RE) -
_$ TRN.DISK:[TRN.CODE.CMSLIB]
$ CMS CREATE LIBRARY/REFERENCE_COPY=TRN.DISK:[TRN.BLD.Vl.CODE.REFCOPY] -
_$ TRN.DISK:[TRN.CODE.CMSLIB]
.Remark: CMS Library for Project Translit Code

Note that the CMS CREATE LIBRARY command uses a /REFERENCE _
COPY qualifier to designate the directory where all reference copies will
reside. Every time a developer creates a main line element generation
(by using a CMS CREATE ELEMENT or CMS REPLACE command),
CMS will put a copy of the new generation into the reference copy
area, while deleting the previous version of the element from your area.
(Section 3.1.3.2 explains the use of a reference copy area.)

The team creates an SCA library with the following commands:

$ CREATE/DIRECTORY/OWNER=[TRN,JONES]/PR0TECTI0N=(S:RWE.0:RWE,G:RE,W:RE) -
_$ TRN.DISK:[TRN.BLD.Vl.SCALIB]
$ SCA CREATE LIBRARY TRN.DISK:[TRN.BLD.Vl.SCALIB]

The team creates the DTM library in the same way. In all these examples,
the CREATE LIBRARY command performs an implicit SET LIBRARY com¬
mand, so that the developer can proceed to use CMS or SCA commands
with the respective libraries. Subsequently, when accessing existing
libraries, developers will need to first use the SET LIBRARY command
before any specific CMS, SCA, or DTM commands that access the library:

$ CMS SET LIBRARY TRN_CMS.DOC

4-4 Using Tools on a Software Project

4.1.2.1 Restricting Access with ACLs

After creating a library, the team may want to further restrict access
to information within the library. By using access control lists (ACLs)
together with the standard UlC-based protection, the team can fine-tune
library protection throughout its directory. The following example shows
how to create and add to ACLs.

$ SET DIRECTORY/ACL=(IDENTIFIER=[TRN],ACCESS=R+W+E+C) -
_$ [TRN.DOC_CMSLIB]
$ SET DIRECTORY/ACL=(IDENTIFIER=[TRN],OPTIONS=DEFAULT,ACCESS=R+W+E+D+C) -
_$ [TRN.DOC.CMSLIB]
$ SET DIRECTORY/ACL=(IDENTIFIER3[NETWORK],ACCESS=NONE) -
_$ [TRN.DOC.CMSLIB]
$ DIR/SECURITY

Directory TRN.DISK:[TRN]

DOC.CMSLIB.DIR;1 [PROJECT.SOURCE] (RWE.RWE.RE,E)
(IDENTIFIER=NETWORK,ACCESS=NONE)
(IDENTIFIER3[PROJECT.SOURCE],OPTIONS=DEFAULT,ACCESS=READ+WRITE*
EXECUTE+CONTROL)
(IDENTIFIER3[PROJECT.SOURCE],ACCESS=READ+WRITE+EXECUTE+CONTROL)

Total of 1 file.

The first command establishes access to the newly created directory file
itself (note the lack of DELETE access). The second command sets the
default for the CMS library: all users associated with the identifier TRN
are allowed READ, WRITE, EXECUTE, DELETE, and CONTROL access to
the contents of this library. Further, this default access control entry (ACE)
applies to all files added to this library. The third command adds an ACE
that prevents network access. The last command gives a directory listing
of the newly created directory along with the ACL associated with it.

If you have already created a CMS library and placed files in that library
without specifying a default ACE, you can change the access to the files in
that library with the following commands:

$ SET DIRECTORY/ACL3(IDENTIFIER3[TRN],OPTIONS=DEFAULT.ACCESS=R+W*E+D+C) -
.$ [TRN.DOC.CMSLIB]
$ SET FILE/ACL/DEFAULT [TRN.DOC.CMSLIB...]*.*

The first command sets the default for the CMS library. The second
command applies the entire default ACL of the parent directory to all
the files in that directory as if they were newly created. See the VMS
DCL Concepts Manual for a detailed explanation of protection procedures,
user identification codes (UICs), and access control lists (ACLs). The
VMS Access Control List Editor Manual contains information on using the
ACL Editor, a VMS utility used to create and maintain ACLs. For more

Using Tools on a Software Project 4-5

information on CMS library security, see the Guide to VAX DEC/Code
Management System.

4.1.2.2 Access Control for Large Projects

Because of the large number of people needing access to CMS sources,
UIC mechanisms fall short of meeting all the needs of a larger project.
To address the need to fine-tune the protection required in CMS, CMS
provides its own ACL mechanism. Whereas VMS ACLs can protect access
to VMS files and directories, CMS ACLs protect access to the following
CMS objects:

Commands
Elements
Element lists
Classes
Class lists
Groups
Group lists
History
Library attributes

CMS ACLs are not designed to provide tighter security than VMS ACLs;
however, they can give you greater control over your CMS libraries by
allowing you to control access to the complete scope of CMS objects, and
not just files and directories.

CMS ACLs are also not designed to take the place of VMS ACLs; on
the contrary, it is recommended to use them together. In this section,
VMS ACLs are used in combination with CMS ACLs to make for a well-
tuned access control mechanism. When considering access control for
large projects, you should first create a list of goals you want to achieve.
Note that attaching ACLs to CMS objects incurs a cost in disk space,
performance, and ease of management, so it is important to plan the use
of ACLs carefully.

This section gives examples of creating ACLs for both CMS library ele¬
ments and commands. In some cases, it may not be necessary to have
ACLs on both elements and commands; how you design your protection
mechanism depends on what your project needs are. For the purposes
of showing examples of CMS ACLs, though, this section first shows a
protection scheme geared toward protecting library elements. Later, some
examples are given showing the use of ACLs on CMS commands.

4-6 Using Tools on a Software Project

In the example used in this section, the Transliteration project team has
chosen the following goals for the project's CMS security mechanism:

1. To establish four groups of users in the system rights list, each of
whom having his or her own specific types of access to CMS objects.
They are holders of one of the following identifiers:

• CONFIG—MANAGER — Held only by the person with the
responsibility for building the entire system. This person has
complete access to all CMS objects.

• PROJECT—SOURCE—READ — Held by any user requiring read¬
only access to files under the PROJECT product root (for example,
a technical writer).

• PROJECT—SOURCE — Held by any user requiring read/write
access to files under the PROJECT product root (for example, a
developer).

• PROJECT—RED — Held by all users when the project enters its
RED period, in which users are prevented from executing the
CREATE—ELEMENT and REPLACE commands. This RED period
helps the project leader prepare the PROJECT product root for a
system build.

2. To first grant CONTROL access to the ACLs on the library elements to
the holder of CONFIG—MANAGER. At least one person should have
CONTROL access to any ACLs that are created because CONTROL is
the only access type that permits you to modify an ACL (other than
BYPASS privilege, discussed later).

3. To create a mechanism that specifies a default access control entry
(ACE) for elements added to the library. This is needed because unless
you specifically restrict access to a CMS object with a CMS ACL, no
restrictions will be enabled by default for that object. Conversely,
once you attach an ACL to a CMS object, access to that object is
permitted only to the holder of the identifiers specified in the ACL.
Thus, one simple method to secure all elements in a CMS library,
for example, is to attach an ACL to the element list. Any user not
matched to the identifier in that ACL will not be permitted access to
that list. The process of executing ACL commands from this point on,
therefore, is a process of granting access, as opposed to restricting it.

4. To grant holders of the PROJECT-SOURCE-READ identifier
ACCEPT, ANNOTATE, FETCH, and REVIEW access to the library
elements.

5. To copy the ACLs to existing elements that have no ACLs.

Using Tools on a Software Project 4-7

6. To deny everyone access to the CREATE—ELEMENT and REPLACE
commands when the project enters the RED period. This goal involves
placing ACLs on commands, as opposed to simply library elements.

7. To use a CMS Event Notification ACE to cause the holder(s) of the
CONFIG—MANAGER identifier to receive mail notification of any
REPLACE command executed while the project is in its RED period.

At the end of this section, a brief discussion of the use of BYPASS is
included.

NOTE

When creating CMS ACLs, take care in preparing the sequence
of ACEs. As with VMS ACLs, access is determined when CMS
finds the first match between the user attempting to gain access
and the identifiers in the ACEs, regardless of subsequent ACEs.

The sections that follow show how to address each of these goals.

Granting CONTROL Access to Library Elements

As mentioned earlier, at least one person should have CONTROL access
to any ACLs that are created because CONTROL is the only access type
that permits you to modify an ACL. In the following command, the holder
of CONFIG—MANAGER is given the following access types to the library
element list:

CONTROL
CREATE
DELETE
MODIFY
REPAIR
REPLACE
RESERVE
UNRESERVE

Specifying CONTROL access in the library element list ACE, along
with OPTIONS=DEFAULT, gives CONFIG-MANAGER the ability to
modify the ACLs on any element added to the library, as in the following
command:

$ CMS SET ACL/OBJECT=LIBRARY ELEMENT.LIST /ACL=(IDENTIFIER=CONFIG_MANAGER,-
OPTIONS=DEFAULT, ACCESS=CONTROL+CREATE+DELETE+MODIFY+REPAIR+-
REPLACE+RESERVE+UNRESERVE)

4-8 Using Tools on a Software Project

Specifying a Default ACE for Library Elements for
PROJECT-SOURCE

When you specify OPTIONS=DEFAULT in an identifier ACE for a library
element list, all newly created elements in the library will inherit this
ACE by default. In the sample command given in this section, holders of
PROJECT-SOURCE are granted the following access types to the library
element list:

CREATE
DELETE
MODIFY
REPAIR
REPLACE
RESERVE
UNRESERVE

The command to do this follows:

$ CMS SET ACL/OBJECT=LIBRARY ELEMENT.LIST /ACL=(IDENTIFIER=PROJECT_SOURCE,-
/OPTIONS=DEFAULT/ACCESS=CREATE+DELETE+MODIFY+REPAIR+REPLACE+RESERVE+UNRESERVE)

Granting Access for Holders of PROJECT-SOURCE—READ

The next goal of the Transliteration project team is to grant holders of
PROJECT—SOURCE—READ the following access types to the library
elements:

ACCEPT
ANNOTATE
FETCH
REVIEW

The following command grants these access types. This command uses
the /DEFAULT qualifier to set this ACL to be the default for any new
elements added to the CMS library.

$ CMS SET ACL/DEFAULT/OBJECT=ELEMENT *.* /ACL=(IDENTIFIER=PROJECT_SOURCE_READ,-
ACCESS=ACCEPT+ANNOTATE+FETCH+REVIEW)

Using Tools on a Software Project 4-9

Copying CMS ACLs to Existing Objects

The ACLs shown in the previous examples will affect only those elements
created after the ACL commands are issued. To have those ACLs ap¬
ply to elements that existed previously, you should issue the following
ACL command, which places those ACLs on previously existing library
elements:

$ CMS SET ACL/DEFAULT/OBJECT=ELEMENT *.*

Placing ACLs on CMS Commands

The previous examples dealt with ACLs placed on library elements. The
example in this section shows placing ACLs on commands. One major
advantage to be gained by placing an ACL on a command, rather than
on each element, is that it reduces the number of ACLs that CMS has to
check when a command is issued. (CMS needs to check only the ACL on
the command, rather than each ACL on each element.) This can result
in improved performance and simplified maintenance. One of the goals
of the Transliteration project team is to have a RED period during which
the libraries must become stable in order to prepare for a system build.
One way to achieve this is to deny access to the REPLACE and CREATE—
ELEMENT commands during that RED period. The following command
shows placing ACLs on REPLACE and CREATE—ELEMENT:

$ CMS SET ACL/OBJECT=COMMAND REPLACE -
_$ /ACL=(IDENTIFIER=PROJECT_SOURCE+PROJECT_RED.ACCESS=NONE)
$ CMS SET ACL/OBJECT=COMMAND CREATE.ELEMENT -
_$ /ACL=(IDENTIFIER=PROJECT_SOURCE+PROJECT_RED,ACCESS=NONE)

Using Event Notification ACLs

An Event Notification ACL can be used to send mail notification to
someone when a specified event occurs. The Transliteration project team
needs to create an Event Notification ACL that sends mail to CONFIG—
MANAGER when anyone attempts to issue the REPLACE command when
the Transliteration project is in its RED period. The following command
accomplishes this:

$ CMS SET ACL/OBJECT=COMMAND REPLACE -
_$ /ACL=(NOTIFY=CONFIG_MANAGER.ACCESS=EXECUTE,IDENTIFIER=[*]+PROJECT_RED)

CMS allows you to write your own event handling program to take a
specific action when an event occurs. See the Guide to VAX DEC/Code
Management System for more details.

4-10 Using Tools on a Software Project

Access During Normal Development

During normal development, holders of either the PROJECT-SOURCE _
READ or PROJECT—SOURCE identifiers are the only users that require
access to the PROJECT product root. The system builder, who holds the
CONFIG—MANAGER identifier, also has access to the PROJECT product
root during this period but generally would not have a reason to access
the product root.

Access When Preparing for a System Build

When creating a build class, the PROJECT product root must be locked for
read-only access. This RED period is needed so that the system builder
has a stable product root when determining which sources to include in
the next system build.

The lock mechanism results from adding the PROJECT—RED identifier
to the system rights list. The following command would carry out this
procedure:

$ SET RIGHTS_LIST/ENABLE/SYSTEM PROJECT.RED

Because the system is a holder of the identifier, every process on the
system immediately becomes a holder of the identifier. This action affects
only the group of users who are the holders of the PROJECT—SOURCE
identifier. Since the PROJECT-SOURCE+PROJECT-RED identifier pre¬
cedes the PROJECT—SOURCE identifier in the product root ACL, any
holder of both the PROJECT-SOURCE and the PROJECT-RED identifiers
will have read-only access. All other users are unaffected.

After resolving which sources to include in the next system build, the
configuration manager unlocks the product root, thereby allowing normal
development work to resume. To unlock the product root, the configu¬
ration manager removes the PROJECT—RED identifier from the system
rights list. Following this procedure, all processes on the system lose the
identifier.

As these examples demonstrate, protection procedures allow you to
restrict access to the library as a whole, or parts of the library, or to
CMS commands themselves, thereby yielding greater control during
builds. Additionally, holding BYPASS or the existence of an ACE granting
BYPASS allows someone to replace or unreserve elements on behalf of
someone else. Holding a process BYPASS privilege circumvents CMS
access checking, allowing your system manager or someone with system
privileges to correct your ACLs if you have inadvertently locked yourself
out of being able to correct them yourself.

Using Tools on a Software Project 4-11

As always, in order to further control library access, you will need to
maintain consistent team working procedures. For more information
on CMS security features, see the Guide to VAX DEC/Code Management
System.

4.2 Maintaining CMS Source Libraries

CMS provides tracking, history, and source management information
that helps a team maintain its source files, design documents, functional
specifications, and so on.

4.2.1 Storing Files in a CMS Library

One of the first tasks of the Transliteration project is to produce specifica¬
tion and design documents. As they are produced, the team stores them
in the CMS library for documentation (see Section 4.1.2 for the procedures
that set up this CMS library).

To invoke CMS and place these documents into the library, type the
following commands:

$ CMS
CMS> CREATE ELEMENT SPEC.MEM
.Remark: Functional Spec
'/.CMS-S-CREATED, element TRN.DISK: [TRN. CODE.CMSLIB] SPEC. MEM created

Once inserted into the CMS library, the file is referred to as an element.
When a developer places a file into a CMS library with the CMS CREATE
ELEMENT command, that file becomes the first generation of the element.
As developers modify the file, CMS will create subsequent generations of
the element.

NOTE

In the above example command, a formatted DIGITAL Standard
Runoff (DSR) file, or MEM file, was inserted into the library.
Although CMS can store both source and formatted DSR files
(.RNO and .MEM, respectively), you may want to consider
storing only the .RNO versions if disk space is a problem. If
needed, you can rebuild the .MEM file using the .RNO file.

4-12 Using Tools on a Software Project

4.2.2 Modifying Elements

Needing to modify the element SPEC.RNO, one of the developers, Mary,
retrieves it from the library with the CMS RESERVE command, edits the
file, and returns it to the library with the CMS REPLACE command. All
these steps can be done from within LSE, as in the following example:

LSE> RESERVE SPEC.RNO
.Remark: Modify tasks system -- expand discussion of capabilities
generation 1 of element SPEC.RNO reserved
LSE>

After editing the file, she returns it to the CMS library as follows:

LSE> REPLACE
.Remark: Functional Spec changed to add new functionality
generation 2 of element SPEC.RNO created
LSE>

The CMS library now contains two generations of the element. Figure 4-1
shows the contents of the CMS library.

Figure 4-1: CMS Library with Two Generations

CMS LIBRARY

SPEC.RNO; 1
I

SPEC.RNO;2

ZK-5949-HC

Using Tools on a Software Project 4-13

4.2.3 Concurrent Access

CMS allows more than one user to access a file at the same time. CMS
notifies you when you try to access a file when another user is working on
that file. For example, Mary has reserved a copy of a design specification.
When a second developer, John, tries to reserve the same element, he
receives the following message:

Element TRANS.DESIGN.RNO currently reserved by:
(1) Mary 1 29-FEB-1988 08:37:28 "Reserved for update"

Proceed? [Y/N] (N): Y
%CMS-S-RESERVED, generation 1 of element TRN.DISK:[TRN.C0DE_CMSLIB]
TRANS.DESIGN.RNO reserved

John reserved the file after being notified that Mary had previously done
so. Meanwhile, Mary replaces her copy. Later that day, she continues her
work, developing another generation of the design specification.

When John replaces his copy, he indicates that his version is a variant, as
follows:

$ CMS REPLACE TRANS.DESIGN.RN0/VARIANT=A "Expand the design of user interface"
Element TRANS.DESIGN.RNO currently reserved by:

(1) Mary 1 29-FEB-1988 08:37:28 "Reserved for update"
Proceed? [Y/N] (N): Y
'/.CMS-S-GENCREATED, generation 2A1 of element TRN.DISK:[TRN.CODE.CMSLIB]TRANS_DE
SIGN.RNO created

CMS prompts for confirmation to inform John that another version has
been created since he reserved the element. Figure 4-2 shows the contents
of the CMS library.

John can use CMS to incorporate his changes into subsequent generations
of this element while ensuring that his changes are consistent with Mary's
changes. To do this, John would issue the following commands:

$ CMS RESERVE TRANS_DESIGN.RN0/MERGE=2A1 "Update on user input option"
•/.CMS-I-MERGECOUNT, 2 changes successfully merged with no conflicts
•/.CMS-S-RESERVED, generation 2 of element TRN_DISK: [TRN. CODE.CMSLIB] TRANS_DESIGN
.RNO reserved and merged with generation 2A1

Before John replaces the merged element, he verifies that the merged file
is as expected. If the file is a code module, he would compile, link, and
execute the code before actually replacing it.

4-14 Using Tools on a Software Project

Figure 4-2: Variants in a CMS Library

CMS Library

SPEC. RNO; 1
1

TRANS_DESIGN.RNO; 1
1

SPEC.RNO;2 TRANS_DESIGN.RNO;2-TRANS_DESIGN.RNO;2A1
1 (Mary) (John)

SPEC.RNO;3 1

1 TRANS_DESIGN.RNO;3
SPEC.RNO;4 (Mary)

ZK-5948-HC

In this case, no conflicts occurred between the two versions. Had there
been any, CMS would have flagged these, and the reserved element
would have needed editing to resolve these conflicts. John then replaces
the element with the following command:

$ CMS REPLACE TRANS_DESIGN.RNO "Merge generation 2A1"
#/,CMS - S - GEN CREATE, generation 2 of element TRN.DISK: [TRN. CODE_CMSLIB]
TRANS_DESIGN.RNO created

Figure 4-3 shows the contents of the CMS library reflecting the merge.

Using Tools on a Software Project 4-15

Figure 4-3: Merging with CMS Libraries

CMS Library

SPEC.RNO; 1 TRANS_DESIGN.RNO; 1
1 1

SPEC.RNO;2

1
TRANS-DESIGN. RNO;2-TRANS_ DESIGN.RNO;2A1

1 (Mary) (John)

SPEC.RNO;3 1

1 TRANS_DESIGN.RNO;3

SPEC.RNO;4 (Mary)

TRANS-DESIGN.RNO;4-

ZK-5940-HC

For more information on merging variants of CMS elements, see the Guide
to VAX DEC/Code Management System.

4.2.4 Creating Classes

The project leader now needs to write a status report based on the most
up-to-date versions of the files. By creating a class, the most up-to-
date files can be retrieved easily from the CMS library. The following
commands show how to create a class and begin inserting generations into
that class.

$ CMS
CMS> CREATE CUSS FIRST_STATUS

Remark: Specs for first status report
'/.CMS-S-CREATED, class TRN.DISK:[TRN.CODE.CMSLIB]FIRST.STATUS created

CMS>INSERT GENERATION SPEC.RNO FIRST.STATUS "for first status report"
'/.CMS-S-GEN INSERTED, generation 1 of element TRN.DISK:[TRN.CODE.CMSLIB]SPEC.RNO
inserted into class TRN.DISK:[TRN.CODE_CMSLIB]FIRST_STATUS
CMS> INSERT GENERATION TRANS.DESIGN.RNO FIRST.STATUS "for first status report"
'/.CMS-S-GENINSERTED, generation 1 of element
TRN.DISK:[TRN.CODE_CMSLIB]TRANS_DESIGN.RNO inserted into class

TRN.DISK:[TRN.CODE.CMSLIB]FIRST.STATUS

4-16 Using Tools on a Software Project

Figure 4-4 shows the contents of the CMS class FIRST-STATUS after the
files have been inserted.

Figure 4-4: Classes in a CMS Library

CMS Library

SPEC.RNO;1
I

SPEC.RNO;2
I

SPEC.RNO;3

TRANS_DESIGN.RNO; 1
I

TRANS_DESIGN.RNO;2-TRANS_DESIGN.RNO;2A
(Mary) (John)

SPEC.RNO;4
TRANS_DESIGN.RNO;3
(Mary)
. I

TRANS DESIGN.RNO;4

ZK-5933-HC

4.2.5 Retrieving Class Contents and Preparing a Build

Developers can retrieve the contents of the class using either CMS FETCH
or MMS. While CMS FETCH can fetch an element generation into the
current default directory, MMS can fetch the element generation and
also allow you to invoke RUNOFF (and other actions) on the files after
fetching. MMS thus automates the building of documents and software
systems (see Section 4.8 for an example of using MMS to build an entire
software application). This section describes using MMS to fetch and build
a software system.

The first step in using MMS is to create a description file. A description file
describes the relationships among the modules that make up the system.
The description file is made up of dependency rules consisting of three
parts:

• Target—A file to be updated by MMS.

• Source—A file used by MMS to update a target.

• Action line—The part of the dependency rule that tells MMS how to
use the sources to update the target.

Using Tools on a Software Project 4-17

The format for arranging these three units in a dependency rule is as
follows:

target : source
action line

The Transliteration developers created the following description file in
order to build a complete set of specifications:

CMSFLAGS = /GENERATI0N=FIRST_STATUS

ALL.DOCS : SPEC.MEM TRANS_DESIGN.MEM
PRINT SPEC.MEM,TRANS_DESIGN.MEM

SPEC.MEM : SPEC.RNO
RUNOFF SPEC

TRANS_DESIGN.MEM : TRANS.DESIGN.RNO
RUNOFF TRANS.DESIGN

This description file also uses a macro, CMSFLAGS. A macro is a name
that represents a character string. You can use macros already provided
with MMS or you can define your own. You can define a macro at the
beginning of a description file, as shown in this example, or on the DCL
command line that invokes MMS. Having defined your macro, you can
use the macro name in the description file in place of the character string
it represents.

CMSFLAGS is a default macro provided by MMS that designates that
the CMS FETCH command on an MMS action line should fetch the most
recent generation of an element on the main line of descent. This macro
can be redefined to indicate a specific element generation, or (as in our
example) an element generation that belongs to a particular class.

The documents are built using the following command to invoke MMS:

$ MMS/CMS

Without the /CMS qualifier, MMS will not access the CMS library for
elements unless a rule specifically directs it to do so. The description file
itself is placed in the CMS library, as part of the class FIRST_STATUS.
Thus, if it becomes necessary in the future to rebuild these specifications,
the team will be able to find the description file quickly. Figure 4-5 shows
the final relationships in the CMS library.

4-18 Using Tools on a Software Project

Figure 4-5: Description File as Part of a CMS Class

CMS Library

SPEC.RN0;1 TRANS—DESIGN.RNO; 1 DESCRIP.MMS; 1

SPEC.RN0.2 TRANS_DESIGN.RNO;2-TRANS_DESIGN.RNO;2A
I (Mary) (John)

SPEC.RN0;3 I

I TRANS_DESIGN.RN0;3
SPEC.RN0;4 (Mary)

I I
L TRANS-DESIGN.RN0;4-

ZK-5934-HC

4.3 Setting Defaults with a LOGIN.COM File

Another early task of the team is to establish work conditions and default
values, in effect a work context, by means of LOGIN command files. A
developer's LOGIN.COM file can automatically perform the following
tasks at system startup:

• Access a previously created LSE environment file.

• Define a project's logical names.

• Set CMS, DTM, and SCA libraries.

• Set a source list to be used by LSE when accessing sources.

Using Tools on a Software Project 4-19

4.3.1 Environment File for LSE

The LSE environment file is a mechanism for providing language-specific
templates for members of a project team. A team can use an environment
file to implement coding and commenting conventions as well as design
standards. Using environment files gives you a way to apply programming
conventions and standards consistently. Additionally, the environment
file is in binary format, so it does not need to be compiled each time you
invoke LSE.

LSE allows you to customize the environment file to redefine tokens,
placeholders, or language definitions as well.

Redefining Tokens

You can add or delete constructs, reformat menus, or edit descriptions
within existing definitions. To redefine templates for the current editing
session only, follow these steps:

1. Issue the GOTO BUFFER/CREATE command followed by a new
buffer name to set up an empty buffer.

2. Issue the EXTRACT TOKEN, EXTRACT PLACEHOLDER, or
EXTRACT LANGUAGE command, followed by the name of the
token, placeholder, or language element you want modified, followed
by the /LANGUAGE=language qualifier.

3. Edit the definition of the selected token, placeholder, or language.

4. Issue the DO command to execute the new definition.

NOTE

If you want to save these modifications for future use, use
the SAVE ENVIRONMENT command, described later in this
section.

For example, to add a BEGIN/END construct to the default definition of a
Pascal WHILE statement, use the EXTRACT command to begin modifying
the default construct. After creating an empty buffer, issue the following
command:

LSE> EXTRACT TOKEN WHILE/LANGUAGE=PASCAL

Figure 4-6 shows the results of issuing the EXTRACT command.

4-20 Using Tools on a Software Project

Figure 4-6: Extracting a Token

I
DELETE TOKEN WHILE -

/LANGUAGE=PASCAL
DEFINE TOKEN WHILE -

/LANGUAGE=PASCAL -

/DESCRIPTION="WHILE expression DO statement" -
/TOPIC="Statements WHILE"

"WHILE ^expression}* DO"
" *{statemenU%"

END DEFINE
[End of file]

Buffer PASCAL.LSE Write Insert Forward

Creating file TRN.DISK:tUSER.U0RK1PASCAL.LSE;

ZK-5979-HC

Edit the token by adding BEGIN and END statements, and the comment
{WHILE} on the END statement. Once you have the definition the way
you want it, press CTRL/Z to get the LSE> prompt. Then issue the DO
command to execute the new definition. Now, each time you use the
WHILE token in Pascal during the current editing session, LSE provides
the new definition.

Saving Modified Definitions

You can save this modified WHILE definition so that it is available in
subsequent work sessions. You need to create an environment file that
can store the WHILE definition and any other language-specific definitions
you might make. It is good practice to save the definition source in a text
file as well.

Using Tools on a Software Project 4-21

To create an environment file, issue the SAVE ENVIRONMENT command
followed by the file name when you are still in the editing session.
Figure 4-7 shows this step.

Figure 4-7: Creating an Environment File

DELETE TOKEN WHILE -
/LANGUAGE=PASCAL

DEFINE TOKEN WHILE -
/LANGUAGE=PASCAL -
/DESCRIPTION^'WHILE expression DO statement" -
/TOPIC="Statements WHILE"

"WHILE X{expression!X DO"
" BEGIN"
" XlstatementJX"
" END {WHILE!"

END DEFINE
[End of file!

Buffer PASCAL.LSE _Write Insert Forward
LSE Command) SAVE ENVIRONMENT PASCAL.ENV | •.
Creating file TRN.DISK:[USER.W0RK3PASCAL.LSE;

ZK-5980-HC

To use the definitions in subsequent sessions, use the /ENVIRONMENT
qualifier on the LSE command line as follows:

$ LSEDIT/ENVIRONMENT=device:[directory]filename.ENV

4-22 Using Tools on a Software Project

In order to make the environment file available to the entire team, you
can store it in a project directory. Each developer's LOGIN.COM file can
define a logical name that LSE translates to obtain the file specification
for the environment file to be used when they invoke LSE. The environ¬
ment file provides coding standards, ensuring consistency among all the
team s developers. Any further modifications to the environment file will
supplement the team's standards.

If everyone on a project defines the logical name LSE$ENVIRONMENT
in their LOGIN.COM files, they can use the stored definitions without
specifying the /ENVIRONMENT qualifier every time they invoke LSE. To
do this, they should add the following command to their LOGIN.COM
files:

$ DEFINE LSEJENVIRONMENT TRN_DISK:[TRN.COMS]PASCAL.ENV

4.3.2 Command Files

Logical names can be defined and made available for the project. On
the Transliteration project, they are defined in a command file stored in
the [TRN.COMS] directory, which individual LOGIN.COM files can then
execute.

Example 4-1 shows a LOGIN.COM file from one of the Transliteration
project's developers.

Using Tools on a Software Project 4-23

Example 4—1: Sample LOGIN.COM File

$ DEFINE LSE$ENVIRONMENT TRN.DISK:[TRN.COMS]PASCAL.ENV
$ @TRN DISK:[TRN.COMS]TRN_LOGICALS.COM

$ CMS SET LIBRARY
$ DTM SET LIBRARY
$ SCA SET LIBRARY
$ DEFINE LSE$SOURCE
$ DEFINE LSE$READ_ONLY_DIRECTORY
$ DEFINE DBG$INIT
$ DEFINE MAIL$EDIT
$ DEFINE PCAC$INIT
$ DEFINE PCAA$INIT

TRN_CMS_CODE /NOVERIFY
TRN.DTM /NOVERIFY
MY.SCALIB, TRN.SCALIB
[], TRN.BLD, TRN.CMS.CODE
TRN.BLD
TRN.DISK:[TRN.COMS]MYDEBUGINIT.COM
CALLABLE.LSE
TRN.DISK:[TRN.COMS]MYINITFILE.PCAC
TRN.DISK:[TRN.COMS]MYINITFILE.PCAA

This file makes available the environment file, PASCAL.ENV, and exe¬
cutes the logical name command file, TRN_LOGICALS.COM. It also sets
this developer's CMS, DTM, and SCA libraries, and establishes a library
search list for SCA that accesses the local SCA library first, followed by
the project-wide SCA library.

The file also defines two LSE logical names to help in source management.
The first defines a logical name that causes LSE to draw files from loca¬
tions in a specific order (user's default directory, project build area, and
the CMS code library). The second LSE logical name causes files that are
read by LSE from this directory to be placed in nonmodifiable, read-only
buffers. This prevents inadvertent changes to files when developers are
using LSE and SCA to browse through different modules. As a result
of this command, developers must reserve a module from CMS before
making any changes, thereby providing a history of their activity.

Next, the LOGIN.COM file defines a logical name for the Debug initializa¬
tion file (which is often tailored individually for each developer), and sets
up LSE as the editor to be invoked from Mail.

Finally, the file defines logical names for the PCA Collector and Analyzer
initialization files. The file specification for the Collector is assigned to
the logical name PCAC$INIT. The file specification for the Analyzer
initialization file is assigned to the logical name PCAA$INIT.

The logical name definitions file (TRN_LOGICALS.COM), accessed by
the LOGIN.COM file, defines the various directories and libraries on the
project. These logical names can be used in place of the full directory or
library specifications. Example 4-2 shows the contents of this file.

4-24 Using Tools on a Software Project

Example 4-2: Project Logical Definitions File

$ DEFINE TRN.PUBLIC
$ DEFINE TRN.COMS
$ DEFINE TRN_CMS_CODE
$ DEFINE TRN.DTM
$ DEFINE TRN_CMS.DOC
$ DEFINE TRN_CMS_DTM
$ DEFINE TRN_DTM_DATA_CMS
$ DEFINE TRN.DTM.DATA
$ DEFINE TRN.BLD
$ DEFINE TRN.REF
$ DEFINE TRN.SCA
$ DEFINE MY.AREA
$ DEFINE MY_SCALIB

TRN.DISK:[TRN.PUBLIC]
TRN.DISK:[TRN.COMS]
TRN.DISK:[TRN.CODE.CMSLIB]
TRN.DISK:[TRN.DTMLIB]
TRN.DISK:[TRN.DOC.CMSLIB]
TRN.DISK:[TRN.DTM.CMSLIB]
TRN.DISK:[TftN.DTM.DATA.CMS]
TRN.DISK:[TRN.DTM.DATA]
TRN.DISK:[TRN.BLD.Vl.WORK]
TRN.DISK:[TRN.BLD.Vl.CODE.REFCOPY]
TRN.DISK:[TRN.BLD.Vl.SCALIB]
TRN.DISK:[JONES.WORK]
TRN.DISK:[JONES.SCALIB]

4.4 Debugging Source Code

This section, along with the ones that follow, shows how the team
addresses a typical software development problem: debugging and editing
source code. Figure 4-8 shows the main steps developers may follow, as
well as the uses of the VMS tools that support these steps.

Using Tools on a Software Project 4-25

Figure 4-8: Steps to Implement Code

ZK-5941-HC

4-26 Using Tools on a Software Project

The Transliteration project has moved into active coding, creating an ap¬
plication named TRANSLIT. As a result, the team has already accumulated
a body of code consisting of multiple modules stored in a CMS library,
supplemented by a read-only reference copy area. As an aid to analyzing
their code, the team has set up a project-wide SC A library; all developers
also use local SCA libraries as necessary for small tasks.

A typical use of the TRANSLIT utility takes this form:

TRANSLIT file-spec original-characters [replacement-characters]

The following example replaces all lowercase letters (a to z) with their
uppercase counterparts (A to Z).

TRANSLIT test.dat/OUT=test.out "a-z" "A-Z"

A recent enhancement to the TRANSLIT utility provides another way
to describe the original characters that are to be replaced. A hyphen (-)
at the beginning of the original character string causes the characters in
quotation marks to represent all the characters that are not in the string.
For example, "-A-Z" represents all characters except for the uppercase
letters A to Z. In effect, a user can designate the original characters by a
kind of complementary description.

Preliminary testing showed that the new enhancement worked as in¬
tended. The developer then returned the changed modules to the CMS
library. Development continued, but subsequent testing using the full
DTM test system showed that the code had regressed. In the process of
enhancing the code, some of the original functionality was lost. Now, the
TRANSLIT utility works properly only when the new, complementary
description is used. When executing the previous simple test case, the
TRANSLIT utility translated all lowercase letters to uppercase letters, but
deleted all other characters, including line breaks.

Mary has been assigned to the problem, but does not know where in
the code the problem exists. Because the application has already been
compiled and linked with the VMS Debugger (debugger), she can begin
to try to localize the problem by stepping through the code with the
debugger. She has a sample test file that the TRANSLIT utility should
modify using the following command:

$ TRANSLIT test.dat/OUT=test.out "a-z" "A-Z"

Using Tools on a Software Project 4-27

Figure 4-9: Problem Source Code from the Debugger

- SRC: module COPY-FILE -scrol1-source-
26:

27: 1 COPY FILE copies the input file to the output file, transliterating
28: characters as it goes. >
29:

-> 30: [GLOBAL] PROCEDURE copy-file < VAR in.file, out-file : TEXT;
31; table : trans-table);
32:
33: VAR
34; in-line : VARYING [max_record_len] OF CHAR;
35; out-line : PACKED ARRAY [1..max_record_len] OF CHAR;

- OUT -output-

- PROMPT -error-program-prompt-
DBG> Step/Into
IDEBUG-I-DYNMODSET, setting module COPY-FILE
DBG> | _

ZK-5981 HC

Mary begins by stepping into the COPY-FILE procedure (a procedure in
the TRANSLIT code). She can then watch characters move from the input
file to the output file. Figure 4-9 shows her location in the code at this
point.

After reading the first line from the input file, she examines the IN¬
LINE variable, in this case, "aBcDeFgHiJk". These characters are incor¬
rectly translated to "ACEGIK" in the output file (they should translate
to "ABCDEFGHIJK"). To investigate this symptom further, Mary steps
through the translation loop the first time, and sees that "A" is written to
OUT—LINE. She verifies this by using the EXAMINE command as follows:

DBG> EXAMINE out.line[out-index]

4-28 Using Tools on a Software Project

Figure 4-10: The EXAMINE Command in the Debugger

- SRC: nodule COPY-FILE -scrol1-source-
73: THEN
74: BEGIN
75: URITELN (out-file, SUBSTR (out.line, 1, out.index));
76: out-index := 0;
77: END;
78: END;

-> 79: copying := NOT tabletcode].conpress;
80: END {UHILE};
81: END;
82:
83: END.

- OUT -output-
COPY-FILEUN-LINE: 'aBcDeFgHiJk'
C0PY-FILE\0UT—LINEC1:II: 'A'

- PROMPT -error-progran-prompt—
DBG> Step
DBG> EXAMINE out-1ineCout.index]
DBG> |

ZK-5982-HC

Figure 4-10 shows the results of her EXAMINE command.

The second time through the loop, the code fails to take the branch that
writes the character to OUT-LINE. Mary examines the variable named
CODE and finds that it translates to a value of 66. She verifies that this
corresponds to the letter "B" by using the following command:

DBG> EVAL/DECIMAL 'B'

Mary then decides to examine the TABLE[CODE] variable. This tells her
that TABLE[CODE].TRANS—VALUE has a value of 258. Since this value
is greater than 255 (the upper limit for ASCII values), the code does not
correctly branch to OUT—LINE. This information provides another piece
to the puzzle.

Using Tools on a Software Project 4-29

Suspecting that the problem is near this point, Mary now leaves the
debugger and enters LSE by issuing the following command:

DBG> EDIT/EXIT

Figure 4-11 shows the screen display as Mary issues this command.

Figure 4-11: Exiting the Debugger to LSE

- SRC: nodule COPY-FILE -scrol1-source-
67: THEN
68: BEGIN
69: out_index := out_index + 1;
70: out_line[out_index] := CHR (tablelcodel.trans_value);
71: END

-> 72: ELSE IF tablelcodel.trans.value = newline
73: THEN
74: BEGIN
75: URITELN (out-file, SUBSTR (out_line, i, out_index));
76: out_index := 0;
77: end;

- OUT -output-—-
COPY_FILE\IN_LINE: 'aBcDeFgHiJk'
COPY—FILEXOUT—LINE Ei:II! 'A'
C0PY-FILENC0DE: 66
66
C0PY_FILE\TABLE[66I

TRANS.VALUE: 258
COMPRESS: False

- PROMPT -error-progran-pronpt-
DBG> EVAL/DECIMAL 'B'
DBG> EXAMINE tablelcodel
DBG> EDIT/EXIT|

ZK-5983-HC

The EDIT/EXIT command places Mary in LSE at the same line of source
code that she was viewing in the debugger. Mary is using a version of
the application compiled and linked with the /DEBUG qualifier, built
from sources in the project work area ([TRN.BLD_Vl.WORK]). Because
this directory is designated as read-only in Mary's LOGIN.COM file, LSE
places a read-only version of the file into the LSE buffer. Now, from

4-30 Using Tools on a Software Project

within LSE, Mary has access to all the information previously stored in the
project-wide SCA library.

To examine the TRANS_VALUE symbol, Mary uses the following SCA
command: °

LSE> GOTO DECLARATION TRANS.VALUE

finds the file (in this case TYPES.PAS) that contains the declaration
of TRANS_VALUE. LSE once again brings a read-only version of the file
into a buffer. Figure 4-12 shows the display as it appears in the editing
window. °

Using Tools on a Software Project 4-31

Figure 4—12i GOTO DECLARATION in SCA

ZK-5984-HC

Now, Mary uses SCA to see how the TRANS-VALUE symbol is pro¬
cessed. She sees that TRANS-VALUE is of type CODE-VALUE. To learn
more about the CODE-VALUE symbol, Mary positions the cursor on
CODE—VALUE, and to display its declaration presses CTRL/D (that is,
GOTO DECLARATION). The declaration shows that CODE—VALUE is
defined to be a value between MIN—CODE and MAX—CODE.

Continuing to gather more information, Mary then displays the declaration
of MIN—CODE. This section of code shows that UNDEF—CODE is defined
to be 258, the value she found in TABLE[CODE].TRANS_VALUE when
using the debugger. That value indicated that no translation was assigned
to the character. To examine the TRANS-VALUE symbol further, Mary
now uses the following SCA command to find all the places that TRANS¬
VALUE is assigned a value:

LSE> FIND trans_value/REFERENCE=WRITE

4-32 Using Tools on a Software Project

Figure 4-13 shows using the results generated by the FIND command.

Figure 4-13: Navigating Based on FIND Results

END;
FOR code := min_code TO max_code DO

BEGIN
IF tablelcode].trans-value = undef-code
THEN

BEGIN
tabletcodel.Qrans-value := replace_code;
tablelcode].compress := TRUE;
END;

END; _
I Buffer BUILDTABLE.PAS Read-only Nomodify Forward

Symbol Class ModuleXLine Type of Occurrence

|TRANS_VALUE component |BUILD_TABLE\76 write reference
BUILD.TABLEMOO write reference

|BUILD-TABLE\107 write reference |
BUILD_TABLE\131 write reference

| Query 1 FIND TRANS,VALUE/REFERENCE=URITE Forward
1 occurrence found (1 symbol, 1 name)
4 occurrences found (i symbol, i name)
137 lines read from file TRN-DISK:CTRN. BLD-Vi.U0RK1BUILDTABLE.PAS;2

ZK 5985-HC

After examining a number of references to TRANS—VALUE, Mary decides
that she can eliminate the problem by adding a FOR loop that originally
had been part of the code. The new FOR loop must set the values in
TABLE that correspond to characters that are not being translated. Mary
speculates that, during the most recent enhancement work, the last
developer may have used the original loop as a guide for the complement
loop. In the process, he may have failed to reinsert the original loop back
into the code.

To change the code, Mary needs to obtain a modifiable source file from
CMS and edit it using LSE, described in Section 4.5.

Using Tools on a Software Project 4-33

4.5 Editing a Source File with LSE

LSE's integration with CMS allows Mary to reserve the source file directly
from the current buffer in LSE, using the following command:

LSE> RESERVE

Note that LSE automatically reserves the current file from CMS.

Once the source module has been reserved from CMS, Mary can use the
language-sensitive features of LSE to modify the code. To correct the
error, Mary adds a FOR loop to properly set the values in TABLE for
characters that are not being translated.

Mary modifies the code with LSE as follows:

1. Uses tokens to generate the FOR, BEGIN, and IF templates.

2. Fills in the loop-specific information.

Figure 4-14 shows the expanded FOR token.

4-34 Using Tools on a Software Project

Figure 4-14: Using a Token with LSE

replace.code := del_code;
FOR i := 1 TO orig_len DO

BEGIN
code := orig.vectorCi];
IF tablelcode].trans_value <> undef_code
THEN

signal_duplicate (code);
IF i <= repl_len
THEN

replace.code := repl_vector[i];
tablelcode],trans.value := replace_code;
tablelcode].compress := compress AND (i >= repl len);
END;

FOR *{0ontrol_var}X := %{value.exprlX XITO I D0UNT01X XCvalue.expr}* DO
XtstatemenUX

END;
END Ibuild-table};

END.
[End of file]

P^S Write Insert_ Forward
137 lines read from file TRN.DISK:[TRN.BLD_Vi.U0RK]BUILDTABLE.PAS;2
Generation 1 of element BUILDTABLE.PAS reserved
137 lines read from file TRN.DISK:[USER.UORKIBUILDTABLE.PAS;1

ZK-5986-HC

Using Tools on a Software Project 4-35

Figure 4-15 shows the loop partially completed: Mary has expanded
the FOR token, filled in the specific code information (MIN-CODE and
MAX-CODE), and expanded the BEGIN and IF tokens.

Figure 4—15: Expanding an LSE Token

code := orig-vectorli];
IF table[code].trans_value <> undef_code
THEN

signal-duplicate (code);
IF i <= repl_len
THEN

rep lace-code := rep 1-vectorti];
table[code].trans-value := replace.code;
tableCcodel.compress := compress AND (i >= repl-len);
END;

FOR code := min_code TO max_code DO
BEGIN
IF ^{Expression}*
THEN

^{statement}*
%l ELSE ^{statement}*]%;
*[statement-1ist]%...
END;

END;
END (build-table};

Buffer BUILDTABLE.PAS Insert Forward
137 lines read from file TRN-DISK:[TRN.BLD_V1.U0RK]BUILDTABLE.PAS,2
Generation 1 of element BUILDTABLE.PAS reserved
137 lines read from file TRN.DISK:[USER.UORKIBUILDTABLE.PAS;1

ZK-5987-HC

4-36 Using Tools on a Software Project

Figure 4-16 shows the completed FOR loop: Mary has filled in the
EXPRESSION and ASSIGNMENT statements, and deleted the ELSE and
STATEMENT-LIST placeholders.

Figure 4-16: Completing Changes to Code

IF tableCcode].trans-value <> undef_code
THEN

signal_duplicate (code);
IF i <= repl_len
THEN

replace_code := repl_vectorCi];
tableCcode],trans_value := replace.code;
tableCcode],compress := compress AND (i >= repl_len);
END;

FOR code := min.code TO max_code DO
BEGIN
IF tableCcode],trans_value = undef_code
THEN

tableCcode],trans_value := code;!
END;

END;
END {build-table};

END.
CEnd of file]

1 P^S _ Write_Insert_F onward
137 lines read from file TRN.DISK:[TRN.BLD.V1.WORKIBUILDTABLE.PAS;2
Generation 1 of element BUILDTABLE.PAS reserved
137 lines read from file TRN.DISK: [USER.UORKIBUILDTABLE.PAS; 1

ZK-5988HC

Having modified the code, Mary now wants to see if her changes were
effective. To do this, she compiles the modified module directly from LSE
to make sure that it compiles without error before attempting an updated
build. The following LSE command allows Mary to compile and review
any errors:

LSE> COMPILE/REVIEW

In this case, no errors appear. Mary then decides to perform a local
build and test her program as part of the full system before returning the
changed module to the CMS library.

Using Tools on a Software Project 4-37

4.6 Compiling and Linking a Modified File

Mary needs to compile and link the full application, including the modified
module, using MMS. In this case, she wants to be sure that the application
build will execute as intended, and that the DTM test set no longer
shows any regressive effects. (See Section 4.8 for an explanation of the
description file that executes the project build.)

Working from her local build area ([JONES.WORK]), Mary initiates the
MMS build procedure with the following command:

$ MMS/CMS WORK.BUILD

When the build is complete, the sources have been compiled and linked;
the project's DTM test collection has also been run automatically. Mary
then uses DTM to review the test collection, and sees that the TRANSLIT
utility now produces results that match the benchmark. Her code changes
have been successful.

Mary is now ready to return the file to CMS. She can directly replace the
element, now verified as correct, using CMS:

$ CMS REPLACE BUILDTABLE.PAS "Fixed translation bug"

4.7 Setting Up the Test System

The Transliteration team needs to set up its test system. Larger projects
benefit from the test system being set up early in the project, as explained
in Section 3.2.3. The steps that the Transliteration team takes in setting
up a test system are listed and explained in this section.

This section is divided into two topics: setting up noninteractive tests, and
setting up interactive tests.

Noninteractive tests, described first, are adequate for testing software that
does not have a terminal-oriented or menu interface. The TRANSLIT soft¬
ware described up until now fits this category, since the application simply
accepts an input text file and gives you an output file with substituted
characters.

4-38 Using Tools on a Software Project

However, to demonstrate the interactive testing capabilities of DTM
Version 2.0, a variant of TRANSLIT is demonstrated that uses forms
created by the VAX Forms Management System (FMS) for its menu-driven
interface. The test system for this variant application is described in
Section 4.7.2.

4.7.1 Setting Up a Noninteractive Test

The first step in setting up the test system is to create the following three
separate storage areas. These were set up earlier, but they are repeated
here:

A DTM library for test results TRN_DISK:[TRN.DTMLIB]

A CMS library for DTM test files TRN_DISK:[TRN.DTM_CMSLIB]

Two subdirectories for test data TRN_DISK:[TRN.DTM_DATA] and TRN_
DISK:[TRN.DTM_DATA_CMS]

The following list gives the additional steps the team needs to take to set
up a noninteractive test:

• Set up the test collection prologue file.

• Set up the test collection epilogue file.

• Establish the default test template and benchmark file directory.

• Create the test template file.

• Create the test description.

• Set up DTM variables.

• Insert the test template file into the CMS library.

The following sections describe each of these steps in detail.

Setting up the test collection prologue file

The test collection prologue file is associated with one or more spec¬
ified test descriptions and runs just before the test template file runs.
Typically, the test prologue file is used as a setup file to establish any
special environment the test requires. The collection prologue file, which
the Transliteration project team creates, does two things:

1. Tests the DTM variable USE—PCA (defined and described later in this
section) to determine whether or not to process the prologue file.

Using Tools on a Software Project 4-39

2. Defines the Collector initialization file according to the DTM variable
USE_PCA_INIT_FILE, whose value is also defined and described
later in this section.

Running the PCA Collector during a test is especially useful for deter¬
mining which code paths are being exercised by the tests themselves.
Section 4.9 shows an example of analyzing coverage data after tests have
been executed.

The collection prologue file is shown in Example 4-3.

Example 4-3: Sample Collection Prologue File —
COLLECTION.PROLOGUE.COM

$! Collection prologue file for running the Collector in batch mode

$!
$ SET VERIFY
$!
$ TRANSLIT:==$'F$LOGICAL("TRANSLIT")'

$!
$! Test DTM variable to determine whether or not to run PCA prologue

$!
$ IF USE.PCA .EQS. "FALSE" THEN EXIT

$!
$! Define the Collector initialization file

$!
$ DEFINE PCAC$INIT USE_PCA_INIT_FILE
$!
$! End of collection prologue file

Next, you need to establish this collection prologue file as the default
prologue file for subsequently created test collections. The following
command specifies the prologue file in Example 4-3 as the default (you do
not need to have an existing prologue file to issue this command):

$ DTM SET PROLOGUE TRN.DISK:[TRN.DTM.CMSLIB]COLLECTION_PROLOGUE.COM

Note that the DTM SET PROLOGUE command requires full file specifica¬
tions for the prologue file. In this example, the prologue file exists in the
DTM CMS library.

4-40 Using Tools on a Software Project

Setting up the test collection epilogue file

Like the prologue file, the epilogue file is associated with one or more
specified test descriptions and runs just after the test template file runs.
Typically, the epilogue file is used to perform filtering and cleanup pro¬
cedures. For example, the epilogue file can edit the results file to remove
run-specific data, such as time stamps, or run information on the amount
of memory used. The epilogue file can also be used to send mail notifica¬
tion to anyone on the project team when the tests are completed, giving
test results, for example.

The epilogue file, which the Transliteration project team creates, sends
the results of the test TRANSLIT_TEST to the project leader, Jones. This
epilogue file, shown in Example 4-4, also makes use of the DTM-provided
symbol DTM$COLLECTION_NAME.

Example 4-4: Sample Collection Epilogue File —
COLLECTION_EPILOGUE.COM

$! Collection epilogue file for mailing test results to JONES, upon completion
$! of the test run.
$!
$ DTM SHOW COLLECTION 'dtm$collection_name'/FULL-
$ /OUTPUT=1dtm$collection_name'.REPORT

$!
$ MAIL 'dmt$collection_name'.REPORT/SUBJECT="Collection summary" JONES

$!
$! End of collection epilogue file

Next, you need to establish this epilogue file as the default epilogue file
for subsequently created test collections. The following command specifies
the epilogue file in Example 4-4 as the default.

$ DTM SET EPILOGUE TRN.DISK:[TRN.DTM_CMSLIB]COLLECTION.EPILOGUE.COM

Note that the DTM SET EPILOGUE command also requires full file
specifications for the epilogue file.

Using Tools on a Software Project 4-41

Establishing the default template and benchmark file directory

The following command establishes the default directory that DTM
searches for the test template and benchmark files:

$ DTM SET TEMPLATE_DIRECTORY TRN.DISK:[TRN.DTM.CMSLIB]
$ DTM SET BENCHMARK.DIRECTORY TRN.DISK:[TRN.DTM.CMSLIB]

When you set the default directories for the template and benchmark
files, DTM automatically looks for those files in those directories during
the test. (DTM looks for files with the same name as the test, with a
.COM extension for template files, and .BMK for benchmark files.) You
can override the default template and benchmark directories on each test
description by including a directory specification as part of the template
or benchmark names. By default, DTM assigns the values test-name.COM
and test-name.BMK to those fields. It is good practice, though, to use the
following guidelines:

• Let DTM assign default names to template and benchmark files to
make tracking the components of each test easier.

• Avoid overriding the template and benchmark directories when creat¬
ing test descriptions. This makes tests more portable. Additionally, if
you later want to change the directory specifications for the template
or benchmark files, you do not need to modify each test description;
you can simply use the SET TEMPLATE—DIRECTORY and SET
BENCHMARK—DIRECTORY commands instead.

Creating the template file for the test

The Transliteration team creates the template file, TRANSLIT_TEST.COM,
shown in Example 4-5.

4-42 Using Tools on a Software Project

Example 4-5: TRANSLIT Test Template File —
TRANSLIT_TEST.COM

$ CREATE TEST.TXT
abc345ghijk
ABCDEFGH789
aBc gHiJk
abc ghijk
ABCDEFGHIJK
aBcDeFgHiJk
abcdefghijk
ABCDEFGHIJK
aBcDeFgHiJk
abcdefghijk
ABCDEFGHIJK
aBcDeFgHiJk
abcdefghijk
ABCDEFGHIJK
lBc4eF7HiJk
$!
$! Changes the case of all letters.
$ TRANSLIT/OUTPUT=outl.txt test.txt "A-Za-z" "a-zA-Z"
$ TYPE 0UT1.TXT
$!
$! Changes all sequences of non-letters to single new-lines. The output
$! contains each word (sequence of letters) on a separate line.
$ TRANSLIT/0UTPUT=out2.txt test.txt "-A-Za-z" "On"
$ TYPE 0UT2.TXT

$!
$! Replaces all escape characters by dollar signs.
$ TRANSLIT/0UTPUT=out3.txt test.txt "~[" "$"
$ TYPE 0UT3.TXT
$!
$! Changes each sequence of spaces to a single space. (The Od makes the
$! original string longer than the replacement string, forcing TRANSLIT
$! to do compression instead of simple replacement.)
$ TRANSLIT/0UTPUT=out4.txt test.txt " Od" " "
$ TYPE 0UT4.TXT
$!
$! Deletes all backspaces.
$ TRANSLIT/0UTPUT=out5.txt test.txt "OB"
$ TYPE 0UT5.TXT
$!
$! Changes all letters to lowercase, and deletes all digits.
$ TRANSLIT/0UT=out6.txt test.txt "A-ZO-9" "a-zOd"
$ TYPE 0UT6.TXT

Using Tools on a Software Project 4-43

Creating the test description

The following command creates the test description TRANSLIT_TEST,
associating the template, prologue, and epilogue files shown earlier:

$ DTM CREATE TEST.DESCRIPTION TRANSLIT.TEST-

_$ /PR0L0GUE=C0LLECTI0N_PR0L0GUE.COM/EPILOGUE=COLLECTION_EPILOGUE.COM

'/,DTM-1-DEFAULTED, benchmark file name defaulted to TRANSLIT.TEST.BMK

•/.DTM-1-DEFAULTED, template file name defaulted to TRANSLIT_TEST.COM

*/,DTM-S-CREATED, test description TRANSLIT.TEST created

Note that by default, DTM associates the template file TRANSLIT—
TEST.COM and the benchmark file TRANSLIT—TEST.BMK with the test
description.

Setting up the DTM variables

A DTM variable is a user-defined symbol or logical name that DTM
stores and uses during the tests. Variables can be referred to in template,
prologue, and epilogue files, and can provide a convenient way to tailor
those files to be used with multiple tests.

The Transliteration team creates the following DTM variables:

TRANSLIT Represents the executable image to be used by the test
set.

USE—PCA Gives PCA coverage, if invoked as TRUE.

USE—PCA—INIT_FILE Provides the file specifications for the default PCA
Collector initialization file.

The following commands define these variables in the DTM library
TRN_DISK:[TRN.DTMLIB]:

$ DTM CREATE VARIABLE TRANSLIT "TRN_DISK:[TRN.BLD_V1.WORKjTRANSLIT.EXE" -

_$ "Executable image to be used by test set"

$ DTM CREATE VARIABLE USE.PCA "FALSE" "Invoked as TRUE, gives PCA coverage"

$ DTM CREATE VARIABLE USE_PCA_INIT_FILE TRN_DISK:[TRN.COMS]MYINITFILE.PCAC"-

_$ "Provides default PCA init file"

Note that the DTM CREATE VARIABLE command accepts three argu¬
ments: the variable name, its value, and an associated remark.

4-44 Using Tools on a Software Project

Inserting the template file into the CMS library

The final step in setting up the test system is to insert the template file
into the CMS library TRN_DISK:[TRN.DTM—CMSLIB]:

$ CMS SET LIBRARY TRN.DISK:[TRN.DTM.CMSLIB]
$ CMS CREATE ELEMENT TRANSLIT_TEST.COM

The first comment sets the default CMS library, and the second command
inserts the template file.

4.7.2 Setting Up an Interactive Test

To create an interactive test of the TRANSLIT variant that uses the menu-
driven interface described in Section 4.7, the Transliteration project team
uses the same library file, collection file, and epilogue file described earlier.
Then, the team takes the following steps:

• Create the test description using the /RECORD qualifier.

• Invoke the Forms TRANSLIT variant application, FTRANSLIT, and
run a sample session.

• Terminate the recording session.

The following sections describe each of these steps in detail.

Creating the Test Description, using /RECORD

As with noninteractive tests, the basic organizational unit within DTM
is the test description. The /RECORD qualifier, used with the TEST-
DESCRIPTION command, allows for the capturing of an interactive ter¬
minal session and produces a SESSION file as the test template. The
SESSION file records all input and output. (The /PROLOGUE and
/EPILOGUE qualifiers can be used with this command to invoke the
collection prologue file shown in Section 4.7.1, provided you have iden¬
tified their locations to DTM with the DTM SET PROLOGUE and SET
EPILOGUE commands.)

Using Tools on a Software Project 4-45

Create the test description FTRANSLIT__TEST by entering the following
command:

$ DTM CREATE TEST.DESCRIPTION /REC0RD/PR0L0GUE=C0LLECTI0N_PR0L0GUE.COM -
_$ /EPILOGUE=COLLECTION_EPILOGUE.COM FTRANSLIT.TEST
.Remark: DTM test of Forms TRANSLIT application
*/,DTM-1-DEFAULTED, benchmark file name defaulted to FTRANSLIT.TEST.BMK
•/•DTM-1'-DEFAULTED, template file name defaulted to FTRANSLIT.TEST.SESSION
•/.DTM-I-BEGIN, your interactive test session is now beginning. . .
Type CTRL/P twice to terminate the session.

Invoking the Forms TRANSLIT application

Enter the following command to invoke the Forms TRANSLIT software:

$ RUN TRN.DISK:[USER]FTRANSLIT

The following screens show the Forms TRANSLIT application in its test
session.

ZK-7447-HC

The user presses the HELP key (PF2) twice to get to the HELP form for
the Main Menu, shown in the next screen.

4-46 Using Tools on a Software Project

Help for TRANSLIT Mein Menu

The TRANSLIT system is an application that transliterates any
input text file that you provide, allowing you to perform simple
string substitution

* Selecting Option i — Translate an input file —
Allows you to specify an input file that
you wish to have processed with TRANSLIT.

* Selecting Option 2 — View an input file —
Allows you to specify an input file that
you wish to have displayed on the screen.

* Selecting Option 3 — View an output file —
Allows you to specify an output file that
you wish to have displayed on the screen.

* Selecting Option 4 — Exit —
Exits you from the TRANSLIT system.

Press RETURN to return to the Main Menu

ZK-7448-HC

The user selects option 1 to translate an input file, shown in the next
screen.

Using Tools on a Software Project 4-47

ZK-7449-HC

The user returns to the Main Menu, and then selects option 3, to view an
output file, shown in the next screen.

4-48 Using Tools on a Software Project

The user returns to the Main Menu, and selects option 4 to exit.

Terminating the Recording Session

Terminate the recording session by pressing CTRL/P twice. This saves
the output as a benchmark for future comparisons.

$
~p

%DTM-I-BMK_SAVED, benchmark has been saved in file
TRN.DISK:[TRN.DTMLIB]FTRANSLIT.TEST.BMK;1
•/.DTM-S-RECORDED, test FTRANSLIT.TEST has been successfully recorded

in file TRN.DISK:[TRN]FTRANSLIT.TEST.SESSION
'/.DTM-S-CREATED, test description FTRANSLIT.TEST created

At this point FTRANSLIT_TEST is like any other test description, whether
created interactively or not. You can place it in a collection and execute it
interactively or in batch. The sample build at the end of this chapter relies
on executing test collections in batch mode. Batch execution is preferred if
you do not wish to tie up a terminal.

Using Tools on a Software Project 4-49

4.7.3 Verifying Your Test System

To check your DTM library to ensure that you have set your template,
benchmark, prologue, and epilogue files correctly, you can use the DTM
SHOW ALL command. The DTM SHOW ALL command displays the
current directory specifications or CMS libraries containing these files, as
well as the number of collections, test descriptions, groups, and variables
in the library.

The following is an example of the DTM SHOW ALL command:

$ DTM SHOW ALL

Description of DEC/Test Manager Library TRN_DISK:[TRN.DTMLIB]

Default template directory: TRN.DISK:[TRN.DTM_CMSLIB] "Default template
directory"
Default benchmark directory: TRN.DI3K:[TRN.DTM_CMSLIB] "Default benchmark

directory"
Default collection prologue: TRN_DISK:[TRN.DTM_CMSLIB]C0LLECTI0N_PR0L0GUE.COM

Default collection epilogue: TRN.DISK:[TRN.DTM_CMSLIB]COLLECTION.EPILOGUE.COM
ft II

Number of collections: 3
Number of test descriptions: 3
Number of groups: 0
Number of variables: 4

4.7.4 Changing Input for a Test

DTM provides the EXTRACT command to allow you to change the input
that your tests are using, simplifying the process of modifying your tests if
the test results indicate you need to test for additional or different input.
The EXTRACT command extracts an INPUT file from a SESSION file
without altering the SESSION file. You can then edit this INPUT file, or
create a new one, and reinsert the INPUT file with either the MODIFY or
CREATE TEST_DESCRIPTION commands.

Later in this chapter, a section is included on using the DTM Review
subsystem, Section 4.9. Part of that section discusses finding shortcom¬
ings in the test that was created and shown earlier in this chapter. The
Transliteration project team needs to modify the test so that it tests for
invalid input. Instead of rebuilding an interactive test from scratch, the
project team uses the DTM EXTRACT command.

4-50 Using Tools on a Software Project

The following command shows an example of using the EXTRACT
command to extract an INPUT file from FTRANSLIT_TEST.SESSION.

$ DTM EXTRACT FTRANSLIT.TEST.SESSION FTRANSLIT.INPUT.INP

The following command modifies the test description FTRANSLIT—
TEST.SESSION, specifying FTRANSLIT_INPUT.INP as the INPUT file:

$ DTM MODIFY TEST_DESCRIPTION/INPUT=FTRANSLIT_INPUT.INP FTRANSLIT.TEST.SESSION

4.8 Building the System

The Transliteration team needs to build the following applications:

• Previous versions of their software

• A new stage in the project's development

Building previous versions depends in part on how conscientiously the
team has used CMS to create classes or stages in the application's develop¬
ment. With the necessary class in place, the team can use MMS to build a
previous version from the sources in the CMS library.

The same MMS description file can build the ongoing development work
as well as a previous version of the software. The description file can also
initiate test procedures, with or without PCA coverage analysis, during
the build. Additionally, the build procedure can automatically update the

SCA library.

In order to carry out these different tasks during the build, the following

must be in place:

• CMS, DTM, and SCA libraries.

• The logicals for the default libraries.

• Tests for the application.

• A PCA Collector initialization file.

• A DTM test collection prologue file.

• A class in the CMS code library for a previous version; a class in the
CMS library for DTM that uses the same name and that incorporates
the tests that correspond to the source class.

Using Tools on a Software Project 4-51

The MMS description shown in Example 4-6 carries out builds for both
new and previous development. Only the MMS command entry changes.
The description file also can run test collections on the build and option¬
ally perform coverage analysis on the test collection. Finally, it can update
the SCA library (generally done if the build constitutes a new version of
the system).

Developers can initiate the build from within the group project area,
[TRN.BLD_Vl.WORK], or from their own local work areas, for example,
[JONES.WORK], Building from the group project area would be appropri¬
ate during a project build using validated sources. This compilation would
update the project-wide SCA library ([TRN.BLD—V 1 .SCALIB]).

A build from the local area would be appropriate when a developer wants
to see the effects of changes made to modules under development. In
this case, MMS will do a time comparison between the modules in the
developer's local directory and those in CMS. MMS carries out the build
using any modules in the local directory that are more recent than those
in the CMS code library. The resulting files are stored in the developer's
local work area. In this case, the local SCA library ([JONES.SCALIB]) is
updated based on this compilation.

Example 4-6 shows the complete MMS description file. This is followed
by sections of the file with explanatory text.

Example 4-6: A Build Procedure Using an MMS Description File

BUILD Procedure

FLAGS and MACROS

Create default flags and macros

DTM

DELETE

DTMLIBRARY

PCA

PCA_INIT_FILE

DTMCOLLECTION

DTMTESTS

DTMCOMMENT

DTM

DELETE

TRN.DTM

FALSE

TRN.DISK:[TRN.COMS]MYINITFILE.PCAC

BUILD.TEST

"Test of build"

Default PCAC Init file

Default collection name

Use all tests

Default collection remark

Default DTM library

Example 4—6 Cont'd. on next page

4-52 Using Tools on a Software Project

Example 4-6 (Cont.): A Build Procedure Using an MMS Description File

TRACE

LIST

DEBUG

CHECK

OPTIMIZE

ANALYSIS.DATA

PFLAGS

CLDFLAGS

MSGFLAGS

DTMFLAGS

LINKFLAGS

= TRACE

= LIST

= DEBUG

= CHECK

= NOOPTIMIZE

= ANALYSIS.DATA

= /$(CHECK) /$(DEBUG) /NOOPTIMIZE /$(ANALYSIS.DATA)

= / $(LIST)

= / $(LIST)

= /SUBMIT=(NOTIFY,L0G_FILE=[])-

/CLASS=(TEMPLATE:"$(MMS$CMS_GEN)",BENCHMARK:"$(MMS$CMS_GEN)")-

/VAR=(USE_PCA=$(PCA),USE_PCA_INIT_FILE=$(PCA_INIT_FILE), -

TRANSLIT="''FSPARSE("TRANSLIT.EXE")'")

= /MAP=$(MMS$TARGET_NAME)/EXE=$(MMS$TARGET_NAME)/$(TRACE)

!Modules in build
TRANSLIT_MODULES= openfiles, types, buildtable, copyfile, expandstring, -

translit, translitc, translitm

RULES

Modify the Pascal rule to decide if analysis data files should be produced.

.pas.obj
IF USE.SCA .EQ.

IF USE.SCA .EQ.

IF USE.SCA .EQ.

IF USE.SCA .EQ.

! a rule for compiling Pascal files

0 THEN $(PASCAL) $(PFLAGS)/NOANALYSIS.DATA $(MMS$SOURCE)

1 THEN $(PASCAL) $(PFLAGS) $(MMS$SOURCE)

1 THEN $(SCA) LOAD $(MMS$TARGET_NAME)

1 THEN $(DELETE) $(MMS$TARGET_NAME).ANA;

Example 4-6 Cont'd. on next page

Using Tools on a Software Project 4-53

Example 4-6 (Cont.): A Build Procedure Using an MMS Description File

.pas.pen

IF USE.SCA .EQ.

IF USE.SCA .EQ.

IF USE_SCA .EQ.

IF USE_SCA .EQ.

! a rule for producing PASCAL pen files

0 THEN $(PASCAL) $(PFLAGS)/NOANALYSIS.DATA $(MMS$SOURCE)

1 THEN $(PASCAL) $(PFLAGS) $(MMS$SOURCE)

1 THEN $(SCA) LOAD $(MMS$TARGET_NAME)

1 THEN $(DELETE) $(MMS$TARGET_NAME).ANA;

+++++++++++++++

TARGETS

•FIRST ! Set a flag to determine how objects are to be compiled
USE.SCA = 0

IF "$(MMSTARGETS)" .EQS. "WORK.BUILD" .OR. "$(MMSTARGETS)" .EQS. "" -
THEN USE.SCA = 1

PCA_LINK = ""

IF "$(PCA)" .NES. "FALSE" THEN PCA_LINK = "/DEBUG=SYS$LIBRARY:PCA$0BJ"

! The normal development build (default if no other target specified)

work_build : translit.exe, - ! Build the translit executable image

test_set ! Run the regression tests

! Work build completed at this point.

! To build a particular version -- used the same as work build, but has

!different target; allows .FIRST directive to cause Pascal not to generate .ANA files.

version_build : work_build

! Version build completed at this point

!The translit executable

translit.exe : translit,olb($(translit_modules)) ! put modules into an object library

$(link) $(linkflags) translit.olb/library/include=translit 'PCA_LINK'

IF "$(DEBUG)" .EQS. "DEBUG" THEN $(link) $(linkflags)/debug/exe= -

$(MMS$TARGET_NAME).debug translit.olb/library/include=translit
set protection=w=re translit.*

Example 4-6 Cont'd. on next page

4-54 Using Tools on a Software Project

Example 4-6 (Cont.): A Build Procedure Using an MMS Description File

! The test set

test.set ! Always run a test set

$(DTM) SET LIBRARY $(dtmlibrary)
$(DTM) CREATE COLLECTION $(dtmcollection) $(dtmtests) -

$(dtmflags) $(dtmcomment)

! test set created at this point

! Source code dependencies that follow create the needed .OBJ files which

! are the sources for the target TRANSLIT.EXE.

translit.obj : translit.pas, openfiles.pen, types.pen

buildtable.obj : types.pen

copyfile.obj : types.pen

expandstring.obj : types.pen

In the next three examples, the single description file in Example 4-6 has
been broken into three main sections, each followed by explanatory text:
Example 4-7, Flags and Macros; Example 4-8, Rules; and Example 4-9,

Targets.

Example 4-7: Flags and Macros Section of the Description File

BUILD Procedure

++++++++++++++++++

FLAGS and MACROS

Create default flags and macros

! Default DTM library

! Default PCAC Init file

! Default collection name

! Use all tests
! Default collection remark

Example 4-7 Cont'd. on next page

O DTM = DTM

DELETE

DTMLIBRARY

PCA

PCA_INIT_FILE

DTMCOLLECTION

DTMTESTS

DTMCOMMENT

= DELETE

= TRN_DTM

= FALSE
= TRN.DISK:[TRN.COMS]MYINITFILE.PCAC

= BUILD.TEST
= *

= "Test of build"

Using Tools on a Software Project 4-55

Example 4-7 (Cont.): Flags and Macros Section of the Description File

TRACE

LIST

DEBUG

CHECK

OPTIMIZE

© ANALYSIS_DATA

PFLAGS

CLDFLAGS

MSGFLAGS

© DTMFLAGS

LINKFLAGS

= TRACE

= LIST

= DEBUG

= CHECK

= NOOPTIMIZE

= ANALYSIS.DATA

= /$(CHECK) /$(DEBUG) /NOOPTIMIZE /$(ANALYSIS DATA)
= / $(LIST)

= / $(LIST)

= /SUBMIT=(NOTIFY,L0G_FILE=[])-

/CLASS=(TEMPLATE:"$(MMS$CMS_GEN)", BENCHMARK:"$(MMS$CMS_GEN)")-

/VAR=(USE_PCA=$(PCA),USE_PCA_INIT_FILE=$(PCA.INIT.FILE), -

TRANSLIT="''F$PARSE("TRANSLIT.EXE")'»)

= /MAP=$(MMS$TARGET_NAME)/EXE=$(MMS$TARGET_NAME)/$(TRACE)

!Modules in build

TRANSLIT_MODULES= openfiles, types, buildtable, copyfile, expandstring, -

translit, translitc, translitm

Key to Example 4-7:

O This entire section defines macros, flags, and default libraries and
names. These defaults will make the description file more generic; that
is, individual instructions that use these defaults can be modified by
changing the definitions rather than all the occurrences of the name,
macro, and so on. TRN—DTM represents the default library; logicals
are defined in the [TRN.COMS] directory for access by individual
LOGIN.COM files. The SC A library has not been defined. As a result,
MMS loads the .ANA files into whatever SCA library is set at the time
of the build.

To make the defaults easier to change, or to use them in more than
one place, they can be kept in a separate file. This file would then
need to be included as part of the description file.

Members of the team may want to change the default names and
macros on occasion. They can change any of the default values in this
description file when they invoke the file. For example, the following
command provides a unique DTM collection name (necessary if they
have kept previous collections):

MMS/MACRO=(DTMCOLLECTION=NEW_NAME)

© The /ANALYSIS-DATA part of the PFLAGS macro causes the Pascal
compiler to generate SCA data files (.ANA).

4-56 Using Tools on a Software Project

© The DTMFLAGS macro is used to submit a collection of tests (the
tests themselves must already exist), and invokes the appropriate
templates and benchmarks from their CMS library. By default, this
collection contains all the tests. The default class for the template and
benchmark directories is the same as the class from which the source
code is drawn. Thus, by having previously set up a class called VI.0
in both the Code and DTM CMS libraries, the team can build and test
VI.0 with the following command:

MMS/CMS/MACR0=(MMS$CMS_GEN="V1.0") VERSI0N_BUILD

Note that this command does not update the SCA library because
it designates the VERSION—BUILD option. This is described in the
explanatory text of Example 4-9.

The DTMFLAGS macro also uses three DTM variables:

• /VAR=USE_ PC A, which sets up a flag to specify coverage analy¬
sis for the test collection.

• /VAR=USE_PCA—INIT—FILE, which sets a default PCA Collector
initialization file; at the same time, it lets the team choose a dif¬
ferent initialization file when invoking MMS (command examples
follow).

• TRANSLIT, which ensures that the DTM test collection is created
based on the default work directory.

In order for the test coverage analysis to occur, the team set up several
conditions:

• They defined USE-PCA, USE-PCA-INIT-FILE, and TRANSLIT
variables in the DTM library. These variables were defined with
the following DTM commands:

$ DTM CREATE VARIABLE/GLOBAL USE.PCA "FALSE"

$ DTM CREATE VARIABLE/GLOBAL/LOGICAL USE_PCA_INIT_FILE -

_$ "TRN.DISK:[TRN.COMS]INITFILE.PCAC"

$ DTM CREATE VARIABLE/GLOBAL/LOGICAL TRANSLIT -

_$ "TRN_DISK:[TRN.BLD_V1.WORK]TRANSLIT.EXE"

• A PCA Collector initialization file that determines what test
coverage data is collected.

• A DTM prologue file that sets up the PCA coverage and points to
the PCA Collector initialization file.

Using Tools on a Software Project 4-57

• An image of the product to be tested, linked to invoke the PCA
Collector; linking is done with the /DEBUG=SYS$LIBRARY:
PCA$OBJ.OBJ qualifier. (The .FIRST part of Example 4-9 shows
how this is done.)

An example follows of the PCA Collector initialization file. The DTM
collection prologue file is shown in Section 4.7.

PCA Collector Initialization File: The initialization file that follows
contains commands passed to the PCA Collector (the file itself is stored in
the [TRN.COMS] directory). This file must contain the GO command as
the last command; optionally, it may contain other Collector commands.
The following example collects system service counts and measures test
coverage by codepath over the entire program. In addition, it selects
output verification and the collection of PC values from the VAX Call
Stack; the file PCA_DTM.LOG stores the output of the logging session.
With this information, the Collector can run in batch mode.

! Test coverage Collector Initialization File

!Turn on output logging
!Gather system service counts

SET LOG PCA_DTM.LOG
SET SERVICES
SET COVERAGE/PREVIOUS PROGRAM_ADDRESS BY CODEPATH !Gather coverage by codepath

!Gather data from Call Stack
IBegin collection

SET STACK.PCS
GO

With the different files and commands in place, the team has two options
and two correspondingly different MMS commands:

1. Build an executable application—current or previous version—that has
a test collection, but no PCA coverage on the tests. (Note that this
command builds the current, default version of the application and
loads the SCA library because WORK_BUILD is specified.)

MMS/CMS WORK.BUILD

2. Build an executable application with a corresponding test collection
and PCA test coverage for that test collection.

MMS/CMS/MACRO=PCA=TRUE

By adding to this command the additional qualifier, /MACRO=PCA_
INIT_FILE=disk:[directory]filename.PCAC, other PCA initialization
files can be designated, thereby providing the developer with greater
flexibility.

4-58 Using Tools on a Software Project

Example 4-8: Rules Section of the Description File

+++++++++++++

RULES

Modify the Pascal rule to decide if analysis data files should be produced.

O .pas.obj ! a
IF USE_SCA .EQ.
IF USE_SCA .EQ.
IF USE.SCA .EQ.
IF USE.SCA .EQ.

.pas.pen
IF USE_SCA .EQ.
IF USE.SCA .EQ.
IF USE.SCA .EQ.
IF USE_SCA .EQ.

rule for compiling PASCAL files
0 THEN $(PASCAL) $(PFLAGS)/NOANALYSIS.DATA $(MMS$SOURCE)
1 THEN $(PASCAL) $(PFLAGS) $(MMS$SOURCE)
1 THEN $(SCA) LOAD $(MMS$TARGET_NAME)
1 THEN $(DELETE) $(MMS$TARGET_NAME).ANA;

! a rule for producing Pascal pen files
0 THEN $(PASCAL) $(PFLAGS)/NOANALYSIS.DATA $(MMS$SOURCE)
1 THEN $(PASCAL) $(PFLAGS) $(MMS$SOURCE)
1 THEN $(SCA) LOAD $(MMS$TARGET_NAME)
1 THEN $(DELETE) $(MMS$TARGET_NAME).ANA;

Key to Example 4-8:

O This section modifies the Pascal rule; this rule already exists since
Pascal is an MMS-supported language. The result is to give the team
the option of using SCA based on a specific compilation. For instance,
for older versions, they may not want to generate analysis data to
be loaded into the SCA library. On the other hand, if the build is
assembling a new version, they are likely to want the SCA library
updated.

NOTE

MMS provides built-in rules for using SCA and has a
/SCA_LIBRARY qualifier to indicate that automatic SCA
handling is desired. The rules shown here, however, are
included to show how MMS rules can be manipulated by
hand.

Using Tools on a Software Project 4-59

Example 4-9: Targets Section of the Description File

+++++++++++++++

TARGETS

O .FIRST ! Set a flag to determine how objects are to be compiled
USE.SCA = 0
IF "$(MMSTARGETS)" .EQS. "WORK.BUILD" .OR. "$(MMSTARGETS)" .EQS. -
THEN USE.SCA = 1
PCA.LINK =
IF "$(PCA)" .NES. "FALSE" THEN PCA.LINK = "/DEBUG=SYS$LIBRARY:PCA$0BJ"

! The normal development build (The default if no other target is specified)

© work.build : translit.exe, - ! Build the translit executable image
test.set ! Run the regression tests

! Work build completed at this point.

! To build a particular version — used the same as work build, but has
!different target; allows .FIRST directive to cause Pascal not to generate .ANA files.

version.build : work.build
! Version build completed at this point

!The translit executable

e translit.exe : translit.olb($(translit_modules)) ! put modules into an olb
$(link) $(linkflags) translit.olb/library/include=translit 'PCA.LINK'
IF "$(DEBUG)" .EQS. "DEBUG" THEN $(link) $(linkflags)/debug/exe= -
$(MMS$TARGET_NAME).debug translit.olb/library/include=translit
set protection=w=re translit.*

! The test set

test.set ! Always run a test set
$(DTM) SET LIBRARY S(dtmlibrary)
$(DTM) CREATE COLLECTION $(dtmcollection) $(dtmtests) -

$(dtmflags) $(dtmcomment)
! Test set created at this point

! Source code dependencies that follow create the needed .OBJ files which
! are the sources for the target TRANSLIT.EXE.

O translit.obj : translit.pas, openfiles.pen, types.pen
buildtable.obj : types.pen
copyfile.obj : types.pen
expandstring.obj : types.pen

4-60 Using Tools on a Software Project

Key to Example 4-9:

O This section, in combination with the modified Pascal rule from
Example 4-8, sets up the targets to update the SCA library. Two
options exist:

1. The SCA library is updated. This is done in either of two ways:

MMS/CMS

MMS/CMS WORK.BUILD

In both of these cases, the USE—SCA flag is set to 1. Based on
this value, the Pascal rule causes the SCA library to be updated.
This is likely to be the most common invocation of the description
file, and so is the default command.

2. The SCA library is not updated; designate VERSION_BUILD
when invoking MMS. This may be done when building an older
generation, as explained in Example 4-7.

© These target instructions set up the MMS dependencies. Different
types of executable images can be built depending on how the team
invokes MMS (see the explanatory text of Example 4-7 for specific
MMS invocations):

1. By default, two executable images that represent the current up-
to-date application of the software system—one is a debugger
version (compiled and linked with the /DEBUG qualifier) and
the other is a nondebugger version that DTM uses for its test
collection.

2. By choice, an image that represents previous versions of the
software application as designated in a CMS class specified during
the MMS command.

© In building the project executable image, the commands create an
object library based on the previously defined macro, (TRANSLIT—
MODULES).

© It is good practice to include the final source dependencies as part of
the description file, although MMS would complete the build without
this information. For additional information about MMS and DTM,
see the Guide to VAX DEC/Module Management System and the Guide
to VAX DEC/Test Manager.

Using Tools on a Software Project 4-61

Table 4-2 summarizes the different commands and their effects for this
MMS description file.

Table 4-2: MMS Description File Command Options

Command Effect

Builds current TRANSLIT.EXE with Test
Collection, no PCA coverage, updates SCA
library.

MMS/CMS

MMS/CMS WORK_BUILD

MMS/CMS/MACRO=PCA=TRUE

MMS/CMS/M ACRO=(MMS$CMS_GEN="V 1.0")
VERSION-BUILD

MMS/CMS/MACRO=(MMS$CMS_GEN= "V1.0")
/MACRO=PCA=TRUE VERSION-BUILD

MMS/CMS/M ACRO=(MMS$CMS_GEN=" V1.0")

MMS/CMS/M ACRO=(MMS$CMS_GEN=" V 1.0")
WORK_BUILD

Builds current TRANSLIT.EXE with Test
Collection, no PCA coverage, updates SCA
library.

Builds current TRANSLIT.EXE with Test
Collection, with PCA coverage on tests,
updates SCA library.

Builds previous class with corresponding Test
Collection, no PCA coverage, no update to
SCA library.

Builds previous class with corresponding Test
Collection, with PCA coverage, no update to
SCA library.

Builds previous class with corresponding Test
Collection, no PCA coverage, updates SCA
library.

Builds previous class with corresponding Test
Collection, no PCA coverage, updates SCA
library.

4.9 Using the DTM Review Subsystem

The DTM Review subsystem allows you to examine the results generated
by executing tests. When the TRANSLIT base level is built, DTM creates
result and difference files when the test collection is executed. The Review
subsystem allows you to examine these files as well as benchmark files for
your tests.

4-62 Using Tools on a Software Project

The following command invokes the DTM Review subsystem to examine
the test results in the collection file NEW_TEST:

$ DTM REVIEW NEW.TEST

Collection NEW_TEST with 1 test was created on l-FEB-1988 10:05:10 by the
command:

CREATE COLLECTION NEW.TEST

*/SUBMIT=(NOTIFY,NOPRINT,KEEP)/CLASS=(TEMPLATE:,BENCHMARK:)/VAR=(USE_PCA=TRUE US
E_PCA_INIT_FILE=TRN_COMS:MYINITFILE.PCAC,TRANSLIT="TRN_DISK:[TRN.BLD.Vl]TRANS’
LIT.EXE;") "Test of build"

Last Review Date = 5-FEB-1988 14:32:12
Success count = 0
Unsuccessful count = 1
New test count = 0
Updated test count = 0
Comparisons aborted = 0
Test not run count = 0

The following sections describe the following topics on the DTM Review
subsystem:

• Selecting a results file

• Reviewing the differences between the results file and the benchmark
file

• Invoking the PCA Analyzer from within DTM Review

• Invoking LSE from PCA

4.9.1 Selecting the Result File from DTM Review

After a collection has been executed and compared, each test is associated
with a benchmark file, a difference file, and a result file. If the test was
unsuccessful — that is, if differences were found between the result file
and the benchmark file — DTM keeps the differences in the difference
file, which you can examine with the SHOW/DIFFERENCE command.

From inside the DTM Review subsystem, the following SELECT command
selects test results for NEW_TEST, the only test in the collection:

DTM_REVIEW> SELECT NEW.TEST
Result Description NEW_TEST Comparison Status : Unsuccessful

Using Tools on a Software Project 4-63

4.9.2 Using the SHOW/DIFFERENCES Command

The following SHOW/DIFFERENCES command displays the differences
between the actual test results and the expected test results. In this
example, two sample screens produced by SHOW/DIFFERENCES are

included.

DTM_REVIEW> SHOW/DIFFERENCES

Figure 4—17: Sample SHOW/DIFFERENCES Output
Screen 0

In Figure 4-17, DTM displays the name of the test and the locations of
the Result and Benchmark files. To the right are two icons—one for the
Result file, and the other for the Benchmark file—that show the current
screen number. When you use SHOW/DIFFERENCES to obtain the
differences screens, you can press the Keypad 0 key to move through the

4-64 Using Tools on a Software Project

differences screens. (Note that you can also press the Keypad PF2 key to
get a help frame that shows what keys you can press to move through the
differences screens and to present the information in different formats.)

Figure 4-18: Sample SHOW/DIFFERENCES Output —
Screen 13

View Output F i 1 ellScreerT
View Output Filet

Output file:

Output file viewport - pr

abcdefghijklno34590
ABCDEfhgiy67583
aBcDeFgHi Jk.1234
AbCdEfGhljK56789
tHIs iS ONly a tEst of TRansLit
AAbbAbbbbCdEFHI
aaaAAAbbl98976
abCdEfGhljK56789
tHIs iS ONly a tEst oF TRansLit
AAbbAbbbbCdEFHI

ZK-7451-HC

In Figure 4-18, you can see how DTM highlights the data in the Result file
screen that differs from the corresponding information in the Benchmark

file.

Using Tools on a Software Project 4-65

4.9.3 Invoking PCA from the REVIEW Subsystem

From the DTM Review subsystem, you can also invoke the PCA Analyzer
using the PCA command. Using the PCA command allows you to exam¬
ine performance and coverage data gathered by the PCA Collector while
DTM was running the tests.

The PCA command, shown in the following example, invokes the
Analyzer from within the Review subsystem of DTM. This command
accepts no qualifiers or parameters. See the Guide to VAX DEC/Test
Manager for more information on this command.

DTM_REVIEW> PCA

VAX Performance and Coverage Analyzer Version 1 1
PCAA>

You must be in the DEC/Test Manager Review subsystem when you
issue the PCA command. You also must be positioned at a DTM result
description to issue this command. (The positioning commands are FIRST,
LAST, NEXT, BACK, and SELECT.) When you issue the PCA command,
DTM spawns a subprocess to invoke the Analyzer. The command line
that spawns the Analyzer as a subprocess also specifies that the Collector
data file created during the batch run of your tests be used as input to the
Analyzer.

DTM sets up an Analyzer filter (DTM—FILTER) to include only the data
that was gathered when the current test (that is, the test at which you are
now positioned) was run. In this way, the Analyzer can examine the data
the Collector gathers on a test-by-test basis.

If you want to examine the data the Collector gathers as averaged over all
tests in your test system rather than on a test-by-test basis, you can cancel
DTM—FILTER by issuing the Analyzer CANCEL FILTER command.

PCAA> CANCEL FILTER DTM.FILTER

If you want to examine data for a particular test in your DTM collec¬
tion, and that test is not the current test, you can use the Analyzer SET
FILTER command to redefine the filter so that it specifies the name of
the test whose results you want to examine next. See the Guide to VAX
Performance and Coverage Analyzer or the Guide to VAX DEC/Test Manager
for more information on using DTM and PCA together.

PCAA> SET FILTER DTM.FILTER RUN.NAME = testname

In this example, testname is the test containing data you want to examine
next.

4-66 Using Tools on a Software Project

To obtain an annotated source listing from which you can locate code lines
you may wish to edit, you can use the PC A PLOT/COVERAGE/SOURCE
command from the DTM subsystem, as in the following example:

PCAA> PLOT/COVERAGE/SOURCE MODULE BUILD.TABLE BY LINE

This command line provides a source listing showing the coverage for
each line in the module BUILD_TABLE. Additionally, by examining the
output produced by this command, you can locate the lines of code you
may want to edit. Invoking LSE from PCA is described in the following
section.

4.9.4 Invoking LSE from PCA

When tuning an application, invoking LSE from PCA allows you to
modify modules. If you want to edit the source code displayed by the
most recent PLOT or TABULATE command, create an annotated source
file listing using the /SOURCE qualifier, as shown in the previous section.
You can then use the EDIT command to invoke LSE from PCA, and then
go directly to the lines shown in the annotated listing.

Example 4-10 shows a portion of an annotated source listing created with
the Analyzer /SOURCE qualifier:

By examining this annotated source listing of the TRANSLIT software,
you can determine that a number of code paths are not covered by the
tests specified in the template file, TRANSLIT_TEST.COM. Specifically,
you can see in Example 4-10 that lines 88 and 99, which deal with error
conditions, received no coverage. Referring to a listing of this file shown
in Example 4-5, you can see that the tests cover only valid input, and
no testing of error handling exists. By redesigning the tests to include
testing for invalid input, the Transliteration team can rebuild TRANSLIT,
and reexamine the coverage data to see if the tests are exercising the error
conditions code.

If you wish to modify the source code shown in the annotated listing, the
command syntax to invoke LSE from PCA is as follows:

PCAA> EDIT [/EXIT] [[module-name\] line number]

Using Tools on a Software Project 4-67

Example 4-10: Sample Annotated Source Code Listing

VAX Performance and Coverage Analyzer Page 2

Test Coverage Data (784 data points total) -

Percent Count Line
0.17, ******** 86: IF repl.len > 1

87: THEN
o.oy. 88: lib$signal (IADDRESS (trnlit_repnotsin),

0);
o.iy, ******** 89: IF repl.len = 0

90: THEN
0.0% 91: replace_code := del.code

92: ELSE
0.1% ******** 93: replace.code := repl.vector[1];
0.4% ******** 94: FOR i := 1 TO orig_len DO

95: BEGIN
- 96: code := orig.vector[i];
- 97: IF table[code].trans.value <> undef.code

98: THEN
0.0% 99: signal.duplicate (code);
0.1% ******** 100: table[code].trans.value := code;

101: END;
0.3% ******** 102: FOR code := min.code TO max.code DO

103: BEGIN
- 104: IF table[code].trans.value = undef.code

105: THEN
106: BEGIN

0.1% ******** 107: table[code].trans.value := replace.co
-: de;

0.3% ******** 108: table[code].compress := TRUE;
109: END;
110: END;
111: END

If you are positioned at a source listing produced by the /SOURCE
qualifier on a PLOT or TABULATE command, you use the EDIT command
without parameters to invoke LSE.

This command spawns a subprocess to run LSE. The PCA Analyzer
automatically positions LSE at the point in the source file displayed by the
PLOT or TABULATE command. When you exit from LSE, the Analyzer
session resumes.

If you use the /EXIT qualifier on the EDIT command, you terminate the
Analyzer session and invoke LSE in the same process.

4-68 Using Tools on a Software Project

If you want to position LSE at a line or file different than the default,
the EDIT command can take a module name and a line number as a
parameter. In this example, EXPANDSTRING is a module name and 25 is
a line number:

PCAA> EDIT EXPANDSTRING\25

If you omit the module name and backslash, LSE defaults to the module
referenced by the PLOT or TABULATE command currently in effect.

4.9.5 Using the Analyzer to Perform a Call Tree Analysis

While SCA is useful for giving you a static call tree analysis for all possible
call chains, you can use the PCA Analyzer to perform a dynamic call tree
analysis. That is, the Analyzer can give you a runtime call tree analysis
that allows you to examine the frequencies of how often each routine
in your code is called. To perform a runtime call tree analysis, use the
CALL—TREE node specifications on a PLOT or TABULATE command.
This results in a call tree plot, which displays the call stack relationship of
program units by name. This allows you to pinpoint the set of subroutine
calls.

Example 4-11 shows a static call tree analysis file, produced by SCA on
the routine READ—COMMAND-LINE.

Example 4-12, by contrast, shows a PCA dynamic call tree analysis of the
same routine.

Using Tools on a Software Project 4-69

Example 4-11: Static Call Tree Analysis

TRANSLIT\READ_COMMAND_LINE calls
. unknown\LIB$GET_FOREIGN

unknown\CLI$DCL_PARSE
unknown\CLI$GET.VALUE

. OPEN_FILES\OPEN_IN calls
unknown\OPEN
unknown\RESET

unknown\IADDRESS
unknown\LENGTH
unknown\SUBSTR

. EXPAND_STRING\EXPAND_STRING calls
unknown\LENGTH
unknown\IADDRESS
unknown\ORD
unknown\SUBSTR
unknown\SUCC

unknown\LIB$SIGNAL
. BUILD_TABLE\BUILD_TABLE calls

unknown\LIB$SIGNAL
unknown\IADDRESS

. . BUILD_TABLE\SIGNAL_DUPLICATE calls
unknown\CHR

. . . unknown\LIB$SIGNAL
unknown\IADDRESS

unknown\ODD
unknown\CLI$PRESENT

. 0PEN_FILES\0PEN_0UT calls
unknown\OPEN
unknown\REWRITE

4-70 Using Tools on a Software Project

Example 4-12: Dynamic Call Tree Analysis

Percent Count

0.0% 1 Chain

99.87, 20169 Chain

0.1% 11 Chain

0.0% 0 Chain

0.0% 0 Chain

0.0% 6 Chain

0.0% 1 Chain

0.0% 0 Chain

0.0% 0 Chain

0.0% 8 Chain

0.1% 14 Chain

VAX Performance and Coverage Analyzer Page 1

Program Counter Sampling Data (20218 data points total) -

Call Chain Name
TRANSLIT

READ.COMMAND.LINE
OPEN.IN

. SHARESPASRTL

. . SHARESPASRTL

. . . USER.OPEN
OPEN.OUT

. SHARESPASRTL

. . SHARESPASRTL

. . . USER.OPEN
COPY.FILE

VAX Performance and Coverage Analyzer Pa6e 2

Program Counter Sampling Data (20218 data points total) - "*

VAX PCA Version 2.0-2 17-FEB-1988 16:46:33

TABULATE Command Summary Information:
Number of buckets tallied:

Program Counter Sampling Data -

Data count in largest defined bucket:
Data count in all defined buckets:
Data count not in defined buckets:

Total number of data values collected.

Command qualifiers and parameters used:

Qualifiers:
/PC SAMPLING /NOSORT /NOMINIMUM /NOMAXIMUM
/NOCUMULATIVE /NOSOURCE /ZEROS /NOSCALE /NOCREATOR.PC
/NOPATHNAME /NOCHAIN.NAME /WRAP /NOPARENT.TASK

/FILL=("*"."0”."x","8",":".."/".“+")
/NOSTACK.DEPTH /MAIN.IMAGE

Node specifications:
CALL.TREE BY CHAIN.ROUTINE

No filters are defined

11

20169 99. .8%
20210 100 .0%

8 0 .oy.

20218 100 .oy.

Using Tools on a Software Project 4-71

1

4.10 Maintaining the Application

All the procedures discussed in this document will make project mainte¬
nance easier The following procedures provide an online knowledge base
from which future developers can work. Several tools collect and provide
access to this information:

CMS, with its ability to accumulate a history of a project's evolution.

SCA, with its ability to provide developers with structural information
about the application; that is, interrelations of routines, symbols, and
modules.

• MMS, with its ability to build a system based on its stored module
dependencies.

4.10.1 CMS Provides History

CMS provides a history of a project that is useful to developers main
taming the application. CMS commands can generate the following
informational reports: 6

• A list of elements in the system

• A list of elements of one file type

• The transactional history of the entire system

• The overall transactional history of a particular element, or specified
for a time period r

• The transactional history of certain kinds of operations

For instance, a new developer on the Transliteration project could list se¬
lected elements in the CMS code library by using the following command:

$ CMS SHOW ELEMENT *.PAS

Elements in DEC/CMS Library TRN.DISK:[TRN.CODE.CMSLIB]

BUILDTABLE.PAS
COPYFILE.PAS
EXPANDSTRING.PAS

"Creates translation table"

Copies input file to output file while transliterating"
"Expands string into code vector"

4-72 Using Tools on a Software Project

A great deal of information is available to the developer with the SHOW
HISTORY command. However, by itself, this command gives so much
information that it generally is issued over selected parts of the library, for
instance, only for specific elements, transactions, or times.

Perhaps a developer needs to modify a particular element. Before starting
work, the developer might find a transaction history of that element
useful. A transaction history of the REPLACE command shows important
element milestones. The following example shows this command.

$ CMS SHOW HISTORY EXPANDSTRING.PAS /TRANSACTION=REPLACE
History of DEC/CMS Library TRN_DISK:[TRN.CODE.CMSLIB]

4-DEC-1986 10:00:06 JOHN REPLACE EXPANDSTRING.PAS "Changed condition handling"
8-DEC-1986 14:38:18 JOHN REPLACE EXPANDSTRING.PAS "Modified character range loop"

By tailoring the CMS commands, individual developers can select the
information that is most useful. Note that DTM also provides a similar
history for your test set.

4.10.2 SCA Provides Structural Information

SCA provides cross-reference and static analysis information across the
project. This eliminates the referencing barriers between modules, speed¬
ing access to different parts of the system. This means easier maintenance
for a developer, particularly if that developer did not work on the project
originally. In this situation, SCA can function as a learning aid by pro¬
viding a means for a developer to walk through the sources of code using
specific queries.

A developer new to a project can use SCA to learn the following:

• The definitional use of a data structure

• The declaration or call of a routine

• The coding standards

• Programming techniques

For example, by using the following command, a developer can locate
calls to the routine BUILD_TREE.

LSE> FIND /REFERENCE=call build.tree

Using Tools on a Software Project 4-73

SCA's static analysis capabilities, particularly its VIEW CALL—TREE
command, can also ease the tasks of maintenance. This command displays
routine call information, as in the following example:

LSE> VIEW CALL.TREE routine.x /depth=2

MODULE_X/ROUTINE_X calls
MODULE.Y/ROUTINE.Y
M0DULE_X/R0UTINE_X1 calls

M0DULE_Z/R0UTINE_Z1
MODULE_X/ROUTINE_X (recursive)

M0DULE_Z/R0UTINE_Z2
MODULE_Y/ROUTINE_Y1

•/.SCA-S-ROUTINES, 6 calls found (1 recursive, depth = 2)

By using commands like these, developers can educate themselves about
an application quickly and independently.

4.10.3 MMS Simplifies Maintenance

Previous examples have shown how MMS automates the process of
building an application (see Section 4.8). With an MMS description file
in place for the complete application, people assigned to maintenance can
rebuild the application. In addition, by examining the description file,
developers can educate themselves as to the dependency relationships
among modules.

Example 4-13 is an extract from Example 4-6, and shows the dependen¬
cies among modules in the Transliteration application. Here, essentially,
are the procedures to build the entire application.

4-74 Using Tools on a Software Project

Example 4-13: Dependencies in an MMS Description File

!Modules in build

TRANSLIT_MODULES= openfiles, types, buildtable, copyfile, expandstring, -
translit, translitc, translitm

!The translit executable

translit.exe : translit.olb($(translit_modules)) ! put modules into an olb
$(link) $(linkflags) translit.olb/library/include=translit 'PCA.LINK'
IF "$(DEBUG)" . EQS. "DEBUG" THEN $(link) $(linkflags)/debug/exe= -
$(MMS$TARGET_NAME).debug translit.olb/library/include=translit
set protection=w=re translit.*

! Source code dependencies that follow create the needed .OBJ files which
! are the sources for the target TRANSLIT.EXE.

translit.obj
buildtable.obj
copyfile.obj
expandstring.obj

translit.pas, openfiles.pen, types.pen
types.pen
types.pen
types.pen

4.10.4 CMS Used with MMS for Maintenance

Problems can arise when developers attempt to find and correct an error
that occurred in a field test or customer version of an application that is
no longer the current version. This is where the CMS class feature in
combination with MMS can be of considerable use in reconstructing a
previous version.

Your team can rebuild the version of the software used by the customer
site (assuming that you have not retained the working application as an
intact build). After reproducing the problem, you can use SCA to help
locate the source modules that are involved with the problem. These
files can then be retrieved from CMS, modified, and returned to the CMS
library. MMS can then rebuild an identical version of the customer's
application with the exception of the new modules. You can then use
DTM to regressively test the modified application before sending the
updated version out to the customer.

Using Tools on a Software Project 4-75

Index

A

ACL (Access Control List)
and large projects • 4-6
use with new libraries*4-5
use with previously created libraries • 4-5

Application
maintaining an • 4-72

B

Build directory
See Directory structure

Build procedures
automating *3-28, 4-51
final for maintenance • 3-41
for individual developers • 3-27
for large projects • 3-9
frequency of*3-7, 3-8
MMS description file for *3-8, 4-51
planning • 3-7
SC A libraries for *3-11
with CMS classes *4-51

BYPASS privilege
using with CMS *4-11

C

Call trees
dynamic • 4-71
obtaining from PCA • 4-69
obtaining from SC A • 4-69

CDD (Common Data Dictionary)
benefits of • 2-16

CMS (Code Management System)
classes • 2-6

See also CMS library
creating (figure) • 4-19

features of • 2-4
groups • 2-6
history for maintenance*4-72
integration • 2-6
libraries

See also CMS library
library for code • 3-3
library for documentation • 3-4
planning libraries for *3-3
REPLACE command *4-38
Search Lists • 3-6
use with DTM • 2-12, 3-17

CMS Access Control Lists *3-30
event notification *4-10
identifier *4-8
placing on elements *4-8
using *4-6

CMS elements
reserving from LSE • 4-33

CMS library

See also Libraries
concurrent access *3-31, 4-14
creating • 4-4
creating class *4-16
for DTM tests *3-17
for large projects • 3-5
history tracking • 3-31
merging elements into *4-14
modifying elements *4-13

.

Index-1

CMS library (cont'd.)

multiple libraries • 3-5 to 3-6

performance • 3-5

retrieving class *4-17

storing elements *4-12

using BYPASS with *4-11

using Search Lists *3-6

variants (figure) • 4-14

Code Management System

See CMS

Common Data Dictionary

See CDD

Communication management

outside project • 3-24

using VAX Notes *3-24 to 3-25

to monitor progress • 3-35

within project *3-24

using PM • 3-24

using VAX Notes *3-24

using VMS Mail *3-24

CONTROL access

granting in a CMS ACL *4-7

CREATE LIBRARY command *4-4

D

DATATRIEVE • 2-16, 3-41

Debugger0 4-27

EDIT command *4-29

example • 4-27

DEC/Test Manager

See DTM

Defaults
setting in LOGIN.COM • 4-19

Description file

and large projects *3-9

described • 3-8

example *4-51
storing • 3-8

target dependencies *4-17

target set-up • 4-59

to build documents *4-17

with previous versions • 4-57

with unsupported languages • 4-59

Directory protection • 3-2

Directory structure

build directory • 3-6

Directory structure

build directory (cont'd.)

See also Reference copy area

build directory (figure) • 3-6

for DTM libraries *3-15

for individual developers • 3-27

for sample project (table) • 4-2

initial requirements*3-3 to 3-6

multiple libraries

need for*3-27

planning • 3-3

planning (figure) • 3-3

public access*3-3

storing command procedures • 3-3

DOCUMENT *2-17

Documentation

reviews *3-26

storing • 3-4

DTM (DEC/Test Manager)

epilogue file *3-28, 4-41

features *2-12

integration *2-12

interactive test • 4-45

prologue file *4-39

/RECORD qualifier *4-45

setting up a test system • 4-38

SHOW ALL command *4-50

SHOW/DIFFERENCES command *4-64

test description • 3-16, 4-44
use with CMS*2-12

variables *4-44

DTM library *3-15

See also Libraries

creating • 4-4
DTM Review subsystem

invoking PCA from • 4-66

using *4-62

DTM subdirectory

and test data *3-17

DTM tests

automating with MMS*4-51

organizing • 3-32 to 3-33
DTM variable

explained • 3-32

in MMS description file *4-57

2-Index

E

EDIT command

use from debugger*4-29
EDT Editor*2-6

Environment file

access from LOGIN file • 4-23
creating • 4-21

LSE • 4-20

using *4-22
Epilogue file

DTM • 4-41

EVE Editor*2-6

Event notification ACLs
in CMS *4-10

F

Field tests

tracking • 3-38

FIND command *4-32, 4-73

G

GOTO DECLARATION command *4-31

H

Human engineering testing* 1-2

I

Initialization file

use with MMS for test coverage (example) •
4-58

Interactive test

setting up for DTM • 4-45

L

Language-Sensitive Editor

See LSE

Libraries

controlling access *4-5

for large project • 4-6 to 4-12

Libraries (cont'd.)

creating • 4-2

planning • 3-3

planning (figure) • 3-3
Life cycle

costs related to phases (figure)* 1-8
design* 1-3

implementation* 1-3

maintenance* 1-4

model (figure) • 1-2

phases described* 1-4
phases of • 1-1

relationship to tools (figure) • 1-7

requirements and specifications analysis* 1-2
testing • 1-4

tools used in (figure)* 1-9
Logical names

and LOGIN.COM *4-23
for build directories • 3-23

for project setup • 3-22
LOGIN.COM

setting defaults in *4-19
LOGIN file

and logical names *4-23

example *4-23
storing • 4-23

to access environment file • 4-23

LSE (Language-Sensitive Editor)

environment file • 4-20, 4-22

expanding tokens *4-34
features of *2-6

integration • 2-8

integration with CMS • 2-8

integration with SCA • 2-8

invoking from PCA*4-67

RESERVE command *4-33

reserving elements from CMS library • 4-33
supported languages • 2-7

LSE SET DIRECTORY/READ_0NLY command*
3-30

M

Macros

See MMS macros
Mail

subdirectory • 3-24

Index-3

Mail (cont'd.)

use in environment®2-15

Maintenance

and CMS *4-72

and MMS *4-74
and permanent storage • 3-42

and SCA • 4-73
for an application • 4-72

preparing for*3-41

Merging CMS elements*4-14

MMS (Module Management System)

and maintenance *4-74

description file • 3-8

features of • 2-10

integration* 2-11

/SCA qualifier*3-12

MMS macros
changing defaults *4-56

use in description file *4-18, 4-56

Multiple CMS libraries

See CMS library

N
Noninteractive test

setting up*4-39

Notes *2-17
for communication management • 3-24

use for project communications • 3-24

P
PCA (Performance and Coverage Analyzer)

call tree analysis *4-69
call tree analysis (example) • 4-71

features of • 2-13
integration* 2-15
invoking from DTM Review *4-66

invoking LSE from • 4-67
obtaining an annotated source file *4-67

using* 3-35

PCA data file
storing* 3-17

Placeholders
redefining • 4-20

PM (Software Project Manager) • 2-17

as a communications tool • 3-24

PM (Software Project Manager) (cont'd.)

features of • 3-36

Project
setting up*3-1

Prologue file
DTM (sample) • 4-39

Protection

and libraries
for large projects • 4-6

for libraries • 4-5

Prototypes

building* 1-2

R
Reference copy area

and CMS libraries • 3-10

with builds • 3-9
REPLACE command *4-13, 4-38

RESERVE command *4-13, 4-33

Results file
DTM • 4-63

Rights identifiers *4-11

creating • 3-2

example *4-7

s
Sample application *4-27

SCA (Source Code Analyzer)

cross-referencing • 2-9

features of • 2-9

FIND command • 4-32
GOTO DECLARATION command *4-31

integration with LSE *2-10

static analysis*2-9
static call tree (example) • 4-69
supported languages • 2-9

use in maintenance *4-73

SCA library
access to • 3-29

See also Libraries

.ANA files *3-11
call tree analysis *4-69

creating • 4-4

for daily work *3-12
loading *3-13, 3-29

4-Index

SCA library

loading (cont'd.)

automating with MMS*4-56

local *3-12

physical vs. virtual *3-13

physical vs. virtual (figure) • 3-29

search list*3-13 to 3-30

benefits of *3-13

for directories (figure) • 3-30

updating • 3-11 to 3-13, 3-29

with builds *3-11

SCAN*2-17

use with DTM *2-17

Schedule management *3-36

Search Lists

CMS*3-6

SET LIBRARY command • 3-13, 4-4

SHOW HISTORY command

CMS *4-72

Software development

problems with* 1-4 to 1-7

Software Development Life Cycle

See Life cycle

Software Project Manager

See PM

Source Code Analyzer

See SCA

Source management

access to sources *3-30

with CMS *3-30

with LSE search list *3-30

Standards

coding • 3-18 to 3-19

design *3-18

performance • 3-20

project • 3-18 to 3-20

testing • 3-20

Status reporting • 3-36

System build
preparing for*4-11

System rights list *4-11

T

Target dependencies

See Description file

Templates

LSE*3-21

Test

changing input for *4-50

creating an interactive • 4-45

creating a noninteractive • 4-39

Test description

creating • 4-44

Testing

phase of life cycle* 1-4

Tests

See DTM tests

Test system

setting up • 4-38

Text Processing Utility *2-6

Tokens

redefining • 4-20

Tools

benefits of • 2-2 to 2-3

relationship to cycle phases (figure)* 1-7

u
UIC (User Identification Code)

for large projects • 4-6

for library access • 4-5

Usability requirements
planning* 1-2

User accounts

setting up*3-2

V

Variable

See DTM variable

VAX DOCUMENT

See DOCUMENT

VAX Notes

See Notes

for communication management • 3-25
for QAR system • 3-38

VAXset *2-1

VAXset tools

acronyms for*2-1

VAX Software Project Manager

See PM

Index-5

VMS operating system

use in environment • 2-15

W

Work procedures

for individual developers • 3-27 to 3-31

6-Index

Reader's Comments A Methodology for
Software Development

Using VMS Tools
AA-HB16C-TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent Good Fair Poor

Accuracy (software works as manual says) □ □ □ □
Completeness (enough information) □ □ □ □
Clarity (easy to understand) □ □ □ □
Organization (structure of subject matter) □ □ □ □
Figures (useful) □ □ □ □
Examples (useful) □ □ □ □
Index (ability to find topic) □ □ □ □
Page layout (easy to find information) □ □ □ □

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Additional comments or suggestions to improve this manual:

I am using Version .

Name/Title _

Company _

of the software this manual describes.

- Dept.

Date

Mailing Address

Phone

-Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications—Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

No Postage
Necessary

if Mailed
in the

United States

■
1

i.11 ■ 11 ■> i ■ 1111 a ■ I • 1111111111 ■ 1111 < 11111 < 11 < 11

-Do Not Tear - Fold Here

C
u

t
A

lo
n
g
 D

o
tt

e
d
 L

in
e

Reader's Comments A Methodology for
Software Development

Using VMS Tools
AA-HB16C-TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's:

Accuracy (software works as manual says)

Completeness (enough information)

Clarity (easy to understand)

Organization (structure of subject matter)

Figures (useful)

Examples (useful)

Index (ability to find topic)

Page layout (easy to find information)

I would like to see more/less _

Excellent Good Fair Poor

□ □ □ □
□ □ □ □
□ □ □ □
□ □ □ □
□ □ □ □
□ □ □ □
□ □ □ □
□ □ □ □

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Additional comments or suggestions to improve this manual:

I am using Version_ of the software this manual describes.

Name/Title _

Company _

Mailing Address

Dept. _

_ Date

Phone

Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION

Corporate User Publications—Spit Brook

ZK01-3/J35
110 SPIT BROOK ROAD

NASHUA, NH 03062-9987

No Postage
Necessary

if Mailed
in the

United States

IiiiiiIIiIImmIIiiiiIiIIiIiiIiIiiIiiIiIimIiIIiiI

— Do Not Tear - Fold Here

C
u

t
A

lo
n
g
 D

o
tt

e
d
 L

in
e

mum
AA-HB16C-TE

